Suppr超能文献

通过细胞骨架中的预张力增强细胞-底物黏附的力学原理。

Mechanical principle of enhancing cell-substrate adhesion via pre-tension in the cytoskeleton.

机构信息

Engineering Mechanics, Institute of High Performance Computing, A(*)STAR, Singapore.

出版信息

Biophys J. 2010 May 19;98(10):2154-62. doi: 10.1016/j.bpj.2010.02.007.

Abstract

Motivated by our earlier study on the effect of pre-tension in gecko adhesion, here we investigate whether and how pre-tension in cytoskeleton influences cell adhesion by developing a stochastic-elasticity model of a stress fiber attached on a rigid substrate via molecular bonds. By comparing the variations in adhesion lifetime and observing the sequences of bond breaking with and without pre-tension in the stress fiber under the same applied force, we demonstrate that the effect of pre-tension is to shift the interfacial failure mode from cracklike propagation toward uniform bond failure within the contact region, thereby greatly increasing the adhesion lifetime. Since stress fibers are the primary load-bearing components of cells, as well as the basic functional units of cytoskeleton that facilitate cell adhesion, this study suggests a feasible mechanism by which cell adhesion could be actively controlled via cytoskeletal contractility and proposes that pre-tension may be a general principle in biological adhesion.

摘要

受我们之前关于壁虎黏附中预张力作用的研究启发,我们通过建立一个刚性基底上通过分子键连接的应力纤维的随机弹性模型,研究细胞骨架中的预张力是否以及如何影响细胞黏附。通过比较黏附寿命的变化,并观察在相同外力作用下,应力纤维中有和没有预张力时键的断裂顺序,我们证明预张力的作用是将界面失效模式从类裂纹扩展转变为接触区域内的均匀键失效,从而大大延长黏附寿命。由于应力纤维是细胞的主要承载组件,也是促进细胞黏附的细胞骨架的基本功能单元,本研究提出了一种可行的机制,即通过细胞骨架的收缩性来主动控制细胞黏附,并提出预张力可能是生物黏附中的一个普遍原则。

相似文献

1
Mechanical principle of enhancing cell-substrate adhesion via pre-tension in the cytoskeleton.
Biophys J. 2010 May 19;98(10):2154-62. doi: 10.1016/j.bpj.2010.02.007.
2
Cooperativity between cell contractility and adhesion.
Phys Rev Lett. 2004 Dec 31;93(26 Pt 1):268109. doi: 10.1103/PhysRevLett.93.268109. Epub 2004 Dec 23.
5
The mechanochemistry of cytoskeletal force generation.
Biomech Model Mechanobiol. 2015 Jan;14(1):59-72. doi: 10.1007/s10237-014-0588-2. Epub 2014 May 6.
6
Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch.
J Biomech Eng. 2008 Jun;130(3):031009. doi: 10.1115/1.2907745.
7
Lifetime and strength of periodic bond clusters between elastic media under inclined loading.
Biophys J. 2009 Nov 4;97(9):2438-45. doi: 10.1016/j.bpj.2009.08.027.
9
A mechanical model of actin stress fiber formation and substrate elasticity sensing in adherent cells.
Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7757-62. doi: 10.1073/pnas.0912739107. Epub 2010 Apr 12.
10
Simulation of the mechanical response of cells on micropost substrates.
J Biomech Eng. 2013 Oct;135(10):101012. doi: 10.1115/1.4025114.

引用本文的文献

1
Mechanical Model for Catch-Bond-Mediated Cell Adhesion in Shear Flow.
Int J Mol Sci. 2020 Jan 16;21(2):584. doi: 10.3390/ijms21020584.
2
A viscoelastic-stochastic model of the effects of cytoskeleton remodelling on cell adhesion.
R Soc Open Sci. 2016 Oct 19;3(10):160539. doi: 10.1098/rsos.160539. eCollection 2016 Oct.
4
Elastic coupling of nascent apCAM adhesions to flowing actin networks.
PLoS One. 2013 Sep 6;8(9):e73389. doi: 10.1371/journal.pone.0073389. eCollection 2013.
5
Cyclic stretch induces cell reorientation on substrates by destabilizing catch bonds in focal adhesions.
PLoS One. 2012;7(11):e48346. doi: 10.1371/journal.pone.0048346. Epub 2012 Nov 12.
6
Matrix rigidity controls endothelial differentiation and morphogenesis of cardiac precursors.
Sci Signal. 2012 Jun 5;5(227):ra41. doi: 10.1126/scisignal.2003002.
7
Hidden multiple bond effects in dynamic force spectroscopy.
Biophys J. 2012 Mar 7;102(5):1184-93. doi: 10.1016/j.bpj.2012.01.037. Epub 2012 Mar 6.
8
Regulation of cell adhesion strength by peripheral focal adhesion distribution.
Biophys J. 2011 Dec 21;101(12):2903-11. doi: 10.1016/j.bpj.2011.11.013. Epub 2011 Dec 20.
9
Motor force homeostasis in skeletal muscle contraction.
Biophys J. 2011 Jul 20;101(2):396-403. doi: 10.1016/j.bpj.2011.05.061.
10
Probing mechanical principles of focal contacts in cell-matrix adhesion with a coupled stochastic-elastic modelling framework.
J R Soc Interface. 2011 Sep 7;8(62):1217-32. doi: 10.1098/rsif.2011.0157. Epub 2011 Jun 1.

本文引用的文献

1
Lifetime and strength of periodic bond clusters between elastic media under inclined loading.
Biophys J. 2009 Nov 4;97(9):2438-45. doi: 10.1016/j.bpj.2009.08.027.
2
Traction dynamics of filopodia on compliant substrates.
Science. 2008 Dec 12;322(5908):1687-91. doi: 10.1126/science.1163595.
3
Pre-tension generates strongly reversible adhesion of a spatula pad on substrate.
J R Soc Interface. 2009 Jun 6;6(35):529-37. doi: 10.1098/rsif.2008.0322. Epub 2008 Sep 18.
4
Cooperativity in adhesion cluster formation during initial cell adhesion.
Biophys J. 2008 Dec;95(11):5424-31. doi: 10.1529/biophysj.108.139584. Epub 2008 Aug 8.
5
Lifetime and strength of adhesive molecular bond clusters between elastic media.
Langmuir. 2008 Feb 19;24(4):1262-70. doi: 10.1021/la702401b. Epub 2008 Jan 8.
6
A bio-chemo-mechanical model for cell contractility.
Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14015-20. doi: 10.1073/pnas.0605837103. Epub 2006 Sep 7.
7
Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize.
Curr Opin Cell Biol. 2006 Oct;18(5):472-81. doi: 10.1016/j.ceb.2006.08.012. Epub 2006 Aug 22.
8
Crosstalk between different adhesion molecules.
Curr Opin Cell Biol. 2006 Oct;18(5):572-8. doi: 10.1016/j.ceb.2006.07.002. Epub 2006 Jul 21.
9
Bistability of cell-matrix adhesions resulting from nonlinear receptor-ligand dynamics.
Biophys J. 2006 Sep 15;91(6):L60-2. doi: 10.1529/biophysj.106.090209. Epub 2006 Jul 7.
10
Effects of cytoskeletal prestress on cell rheological behavior.
Acta Biomater. 2005 May;1(3):255-62. doi: 10.1016/j.actbio.2005.01.004. Epub 2005 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验