UPSP 5304 de Physiopathologie Animale et Pharmacologie Fonctionnelle, Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes Atlantique, ONIRIS, Nantes, France.
J Pharm Pharmacol. 2010 Mar;62(3):339-45. doi: 10.1211/jpp.62.03.0008.
In experimental pharmacology, drug effect studies currently establish and analyse cumulative concentration-response curves (CCRC) under repeated measurements designs. Usually the CCRC parameters are estimated using the Hill's function in a nonlinear regression for independent data. The two-way analysis of variance is generally used to identify a statistical difference between the responses for two treatments but that analysis does not take into account the nonlinearity of the model and the heteroscedasticity (uneven distribution) of the data. We presently tested the possibility of finding a statistical solution for the nonlinear response in repeated measurements data using the nonlinear mixed effects (nlme) models.
Experimental data sets, originating from studies on beta-adrenoceptor-induced relaxation in rat thoracic aorta ring, were analysed using the nlme methods.
Comparison with classical methods showed the superiority of the nlme models approach. For each pharmacological parameter (E(m), n, pD(2)), a point estimate, a standard error and a confidence interval are returned by the nlme procedures respecting the assumption of independency and normality of the residuals.
Using the method presently described, it is now possible to detect significant differences for each pharmacological parameter estimated in different situations, even for designs with small samples size (i.e. at least six complete curves).
在实验药理学中,药物效应研究目前在重复测量设计下建立和分析累积浓度-反应曲线(CCRC)。通常使用非线性回归中的 Hill 函数来估计 CCRC 参数,该函数适用于独立数据。双向方差分析通常用于识别两种处理方法之间的响应差异,但该分析并未考虑模型的非线性和数据的异方差性(不均匀分布)。目前,我们使用非线性混合效应(nlme)模型检验了在重复测量数据中找到非线性响应的统计解决方案的可能性。
使用 nlme 方法对源自大鼠胸主动脉环β-肾上腺素能受体诱导松弛研究的实验数据集进行了分析。
与经典方法相比,nlme 模型方法具有优越性。对于每个药理学参数(E(m)、n、pD(2)),nlme 程序返回一个点估计值、标准误差和置信区间,同时考虑到残差的独立性和正态性假设。
使用目前描述的方法,现在可以检测到在不同情况下估计的每个药理学参数的显著差异,即使对于样本量较小的设计(即至少六个完整曲线)也是如此。