Suppr超能文献

应用于累积浓度-反应曲线的非线性混合效应模型。

Nonlinear mixed effects models applied to cumulative concentration-response curves.

机构信息

UPSP 5304 de Physiopathologie Animale et Pharmacologie Fonctionnelle, Ecole Nationale Vétérinaire, Agroalimentaire et de l'alimentation Nantes Atlantique, ONIRIS, Nantes, France.

出版信息

J Pharm Pharmacol. 2010 Mar;62(3):339-45. doi: 10.1211/jpp.62.03.0008.

Abstract

OBJECTIVES

In experimental pharmacology, drug effect studies currently establish and analyse cumulative concentration-response curves (CCRC) under repeated measurements designs. Usually the CCRC parameters are estimated using the Hill's function in a nonlinear regression for independent data. The two-way analysis of variance is generally used to identify a statistical difference between the responses for two treatments but that analysis does not take into account the nonlinearity of the model and the heteroscedasticity (uneven distribution) of the data. We presently tested the possibility of finding a statistical solution for the nonlinear response in repeated measurements data using the nonlinear mixed effects (nlme) models.

METHODS

Experimental data sets, originating from studies on beta-adrenoceptor-induced relaxation in rat thoracic aorta ring, were analysed using the nlme methods.

KEY FINDINGS

Comparison with classical methods showed the superiority of the nlme models approach. For each pharmacological parameter (E(m), n, pD(2)), a point estimate, a standard error and a confidence interval are returned by the nlme procedures respecting the assumption of independency and normality of the residuals.

CONCLUSIONS

Using the method presently described, it is now possible to detect significant differences for each pharmacological parameter estimated in different situations, even for designs with small samples size (i.e. at least six complete curves).

摘要

目的

在实验药理学中,药物效应研究目前在重复测量设计下建立和分析累积浓度-反应曲线(CCRC)。通常使用非线性回归中的 Hill 函数来估计 CCRC 参数,该函数适用于独立数据。双向方差分析通常用于识别两种处理方法之间的响应差异,但该分析并未考虑模型的非线性和数据的异方差性(不均匀分布)。目前,我们使用非线性混合效应(nlme)模型检验了在重复测量数据中找到非线性响应的统计解决方案的可能性。

方法

使用 nlme 方法对源自大鼠胸主动脉环β-肾上腺素能受体诱导松弛研究的实验数据集进行了分析。

主要发现

与经典方法相比,nlme 模型方法具有优越性。对于每个药理学参数(E(m)、n、pD(2)),nlme 程序返回一个点估计值、标准误差和置信区间,同时考虑到残差的独立性和正态性假设。

结论

使用目前描述的方法,现在可以检测到在不同情况下估计的每个药理学参数的显著差异,即使对于样本量较小的设计(即至少六个完整曲线)也是如此。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验