Suppr超能文献

挖掘预测B细胞表位的抗体-抗原相互作用关联。

Mining for the antibody-antigen interacting associations that predict the B cell epitopes.

作者信息

Zhao Liang, Li Jinyan

机构信息

Bioinformatics Research Center, & School of Computer Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798.

出版信息

BMC Struct Biol. 2010 May 17;10 Suppl 1(Suppl 1):S6. doi: 10.1186/1472-6807-10-S1-S6.

Abstract

BACKGROUND

Predicting B-cell epitopes is very important for designing vaccines and drugs to fight against the infectious agents. However, due to the high complexity of this problem, previous prediction methods that focus on linear and conformational epitope prediction are both unsatisfactory. In addition, antigen interacting with antibody is context dependent and the coarse binary classification of antigen residues into epitope and non-epitope without the corresponding antibody may not reveal the biological reality. Therefore, we take a novel way to identify epitopes by using associations between antibodies and antigens.

RESULTS

Given a pair of antibody-antigen sequences, the epitope residues can be identified by two types of associations: paratope-epitope interacting biclique and cooccurrent pattern of interacting residue pairs. As the association itself does not include the neighborhood information on the primary sequence, residues' cooperativity and relative composition are then used to enhance our method. Evaluation carried out on a benchmark data set shows that the proposed method produces very good performance in terms of accuracy. After compared with other two structure-based B-cell epitope prediction methods, results show that the proposed method is competitive to, sometimes even better than, the structure-based methods which have much smaller applicability scope.

CONCLUSIONS

The proposed method leads to a new way of identifying B-cell epitopes. Besides, this antibody-specified epitope prediction can provide more precise and helpful information for wet-lab experiments.

摘要

背景

预测B细胞表位对于设计对抗感染因子的疫苗和药物非常重要。然而,由于该问题的高度复杂性,以往专注于线性和构象表位预测的方法都不尽人意。此外,抗原与抗体的相互作用依赖于上下文,在没有相应抗体的情况下将抗原残基粗略地二元分类为表位和非表位可能无法揭示生物学现实。因此,我们采用一种新方法,利用抗体与抗原之间的关联来识别表位。

结果

给定一对抗体-抗原序列,表位残基可通过两种关联类型来识别:互补决定区-表位相互作用双团和相互作用残基对的共现模式。由于关联本身不包括一级序列上的邻域信息,因此使用残基的协同性和相对组成来改进我们的方法。在一个基准数据集上进行的评估表明,所提出的方法在准确性方面表现非常出色。与其他两种基于结构的B细胞表位预测方法相比,结果表明所提出的方法具有竞争力,有时甚至优于适用范围小得多的基于结构的方法。

结论

所提出的方法带来了一种识别B细胞表位的新途径。此外,这种抗体特异性表位预测可为湿实验室实验提供更精确和有用的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a8/2873829/a2ae189aeb8a/1472-6807-10-S1-S6-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验