Suppr超能文献

V1 不能通过对上下视野刺激的反应极性反转来唯一识别。

V1 is not uniquely identified by polarity reversals of responses to upper and lower visual field stimuli.

机构信息

The Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA.

出版信息

Neuroimage. 2010 Oct 1;52(4):1401-9. doi: 10.1016/j.neuroimage.2010.05.016. Epub 2010 May 20.

Abstract

The cruciform hypothesis states that if a visual evoked potential component originates in V1, then stimuli placed in the upper versus lower visual fields will generate responses with opposite polarity at the scalp. This diagnostic has been used by many studies as a definitive marker of V1 sources. To provide an empirical test of the validity of the cruciform hypothesis, we generated forward models of cortical areas V1, V2 and V3 that were based on realistic estimates of the 3-D shape of these areas and the shape and conductivity of the brain, skull and scalp. Functional MRI was used to identify the location of early visual areas and anatomical MRI data was used to construct detailed cortical surface reconstructions and to generate boundary element method forward models of the electrical conductivity of each participant's head. These two data sets for each subject were used to generate simulated scalp activity from the dorsal and ventral subdivisions of each visual area that correspond to the lower and upper visual field representations, respectively. The predicted topographies show that sources in V1 do not fully conform to the cruciform sign-reversal. Moreover, contrary to the model, retinotopic visual areas V2 and V3 show polarity reversals for upper and lower field stimuli. The presence of a response polarity inversion for upper versus lower field stimuli is therefore an insufficient criterion for identifying responses as having originated in V1.

摘要

十字形假说指出,如果一个视觉诱发电位成分起源于 V1,那么刺激放置在上半视野和下半视野将在头皮上产生极性相反的反应。许多研究都将这一诊断作为 V1 来源的明确标志物。为了对十字形假说的有效性进行实证检验,我们生成了基于对这些区域的三维形状以及大脑、颅骨和头皮的形状和导电性的真实估计的皮质区域 V1、V2 和 V3 的正向模型。功能性磁共振成像 (fMRI) 用于识别早期视觉区域的位置,解剖磁共振成像 (MRI) 数据用于构建详细的皮质表面重建,并为每个参与者头部的电导率生成边界元方法正向模型。对于每个主题,这两个数据集用于从每个视觉区域的背部分支和腹部分支生成对应于下半视野和上半视野表示的模拟头皮活动。预测的地形图表明,V1 中的源不完全符合十字形反转。此外,与模型相反,视网膜定位的视觉区域 V2 和 V3 对上半视野和下半视野刺激表现出极性反转。因此,上半视野和下半视野刺激的反应极性反转不足以作为识别起源于 V1 的反应的标准。

相似文献

1
V1 is not uniquely identified by polarity reversals of responses to upper and lower visual field stimuli.
Neuroimage. 2010 Oct 1;52(4):1401-9. doi: 10.1016/j.neuroimage.2010.05.016. Epub 2010 May 20.
2
On determining the intracranial sources of visual evoked potentials from scalp topography: a reply to Kelly et al. (this issue).
Neuroimage. 2013 Jan 1;64:703-11. doi: 10.1016/j.neuroimage.2012.09.009. Epub 2012 Sep 13.
5
Visual field asymmetries in visual evoked responses.
J Vis. 2014 Dec 19;14(14):13. doi: 10.1167/14.14.13.
6
Improved method for retinotopy constrained source estimation of visual-evoked responses.
Hum Brain Mapp. 2013 Mar;34(3):665-83. doi: 10.1002/hbm.21461. Epub 2011 Nov 18.
7
Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti).
J Neurophysiol. 1997 Jun;77(6):3193-217. doi: 10.1152/jn.1997.77.6.3193.
9
Visual field representations and locations of visual areas V1/2/3 in human visual cortex.
J Vis. 2003;3(10):586-98. doi: 10.1167/3.10.1. Epub 2003 Oct 24.
10
Visual areas in macaque cortex measured using functional magnetic resonance imaging.
J Neurosci. 2002 Dec 1;22(23):10416-26. doi: 10.1523/JNEUROSCI.22-23-10416.2002.

引用本文的文献

1
Visual cortical area contributions to the transient, multifocal and steady-state VEP: A forward model-informed analysis.
Imaging Neurosci (Camb). 2024 Apr 26;2. doi: 10.1162/imag_a_00152. eCollection 2024.
2
Optimal feature encoding in early vision.
Sci Rep. 2025 Jul 3;15(1):23794. doi: 10.1038/s41598-025-07644-9.
4
Visual Field Asymmetries in Responses to ON and OFF Pathway Biasing Stimuli.
Vis Neurosci. 2024 Dec 19;41:E007. doi: 10.1017/S095252382400004X.
5
Glaucoma classification through SSVEP derived ON- and OFF-pathway features.
medRxiv. 2024 Aug 22:2024.08.22.24312443. doi: 10.1101/2024.08.22.24312443.
6
An extremely fast neural mechanism to detect emotional visual stimuli: A two-experiment study.
PLoS One. 2024 Jun 21;19(6):e0299677. doi: 10.1371/journal.pone.0299677. eCollection 2024.
7
Estimating neural activity from visual areas using functionally defined EEG templates.
Hum Brain Mapp. 2023 Apr 1;44(5):1846-1861. doi: 10.1002/hbm.26188. Epub 2023 Jan 18.
10
A visual encoding model links magnetoencephalography signals to neural synchrony in human cortex.
Neuroimage. 2021 Dec 15;245:118655. doi: 10.1016/j.neuroimage.2021.118655. Epub 2021 Oct 21.

本文引用的文献

1
The folding fingerprint of visual cortex reveals the timing of human V1 and V2.
Neuroimage. 2010 Feb 1;49(3):2494-502. doi: 10.1016/j.neuroimage.2009.09.022. Epub 2009 Sep 22.
2
Does retinotopy influence cortical folding in primate visual cortex?
J Neurosci. 2009 Sep 9;29(36):11149-52. doi: 10.1523/JNEUROSCI.1835-09.2009.
3
Investigating spatial specificity and data averaging in MEG.
Neuroimage. 2010 Jan 1;49(1):525-38. doi: 10.1016/j.neuroimage.2009.07.043. Epub 2009 Jul 25.
4
Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals.
Neuroimage. 2008 Oct 1;42(4):1397-413. doi: 10.1016/j.neuroimage.2008.06.013. Epub 2008 Jun 21.
6
The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex.
Neuroimage. 2007 Jul 15;36(4):1225-35. doi: 10.1016/j.neuroimage.2007.03.066. Epub 2007 Apr 19.
7
Spatial resolution of EEG cortical source imaging revealed by localization of retinotopic organization in human primary visual cortex.
J Neurosci Methods. 2007 Mar 30;161(1):142-54. doi: 10.1016/j.jneumeth.2006.10.008. Epub 2006 Nov 13.
8
Identification of the neural sources of the pattern-reversal VEP.
Neuroimage. 2005 Feb 1;24(3):874-86. doi: 10.1016/j.neuroimage.2004.09.029.
9
A principal component analysis of multifocal pattern reversal VEP.
J Vis. 2004 Feb 4;4(1):32-43. doi: 10.1167/4.1.4.
10
Consistent and precise localization of brain activity in human primary visual cortex by MEG and fMRI.
Neuroimage. 2003 Mar;18(3):595-609. doi: 10.1016/s1053-8119(02)00053-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验