Scott Martin T W, Xu Hui, Yakovleva Alexandra, Tibshirani Robert, Goldberg Jeffrey L, Norcia Anthony M
Department of Psychology, Stanford University.
Department of Statistics, Stanford University.
medRxiv. 2024 Aug 22:2024.08.22.24312443. doi: 10.1101/2024.08.22.24312443.
Recent evidence from small animal models and human electrophysiology suggests that the OFF-pathway is more vulnerable to glaucomatous insult than the ON-pathway. Thus, OFF-pathway based measurements of visual function may be useful in the diagnosis of Glaucoma. The steady-state visually evoked potential (SSVEP) can be used to non-invasively make such functional measurements. Here, we examine whether OFF- and ON-pathway biasing SSVEP measurements differently predict glaucoma diagnosis using a large cohort of 98 glaucoma patients and 71 controls. Using both a logistic regression with k-fold cross-validation and a random forest classifier, we show that OFF-pathway biasing features produce a small improvement in predictive accuracy over ON-pathway biasing features. However, despite our inclusion of many more response features and the retention of both participants' eyes, our classifier did not perform as well as previous reports that used the isolated-check VEP. This is likely a result of the relatively small amount of data we collected for each participant, but may also be explained by the absence of any train-test splitting in preexisting work. Nevertheless, our results support further exploration of the diagnostic potential of OFF-pathway biasing functional biomarkers for glaucoma.
来自小动物模型和人类电生理学的最新证据表明,与开通路相比,关通路更容易受到青光眼性损伤。因此,基于关通路的视觉功能测量可能有助于青光眼的诊断。稳态视觉诱发电位(SSVEP)可用于非侵入性地进行此类功能测量。在此,我们使用98名青光眼患者和71名对照的大型队列,研究关通路和开通路偏向的SSVEP测量对青光眼诊断的预测是否存在差异。通过使用具有k折交叉验证的逻辑回归和随机森林分类器,我们表明关通路偏向特征在预测准确性上比开通路偏向特征有小幅提高。然而,尽管我们纳入了更多的反应特征并保留了参与者的双眼,但我们的分类器表现不如先前使用孤立检查VEP的报告。这可能是因为我们为每个参与者收集的数据量相对较少,但也可能是由于先前研究中没有进行任何训练-测试拆分。尽管如此,我们的结果支持进一步探索关通路偏向功能生物标志物在青光眼诊断中的潜力。