Suppr超能文献

改进的基于视网膜投射约束的视觉诱发电位源估计方法。

Improved method for retinotopy constrained source estimation of visual-evoked responses.

机构信息

Multimodal Imaging Laboratory, Department of Radiology, University of California, San Diego.

出版信息

Hum Brain Mapp. 2013 Mar;34(3):665-83. doi: 10.1002/hbm.21461. Epub 2011 Nov 18.

Abstract

Retinotopy constrained source estimation (RCSE) is a method for noninvasively measuring the time courses of activation in early visual areas using magnetoencephalography (MEG) or electroencephalography (EEG). Unlike conventional equivalent current dipole or distributed source models, the use of multiple, retinotopically mapped stimulus locations to simultaneously constrain the solutions allows for the estimation of independent waveforms for visual areas V1, V2, and V3, despite their close proximity to each other. We describe modifications that improve the reliability and efficiency of this method. First, we find that increasing the number and size of visual stimuli results in source estimates that are less susceptible to noise. Second, to create a more accurate forward solution, we have explicitly modeled the cortical point spread of individual visual stimuli. Dipoles are represented as extended patches on the cortical surface, which take into account the estimated receptive field size at each location in V1, V2, and V3 as well as the contributions from contralateral, ipsilateral, dorsal, and ventral portions of the visual areas. Third, we implemented a map fitting procedure to deform a template to match individual subject retinotopic maps derived from functional magnetic resonance imaging (fMRI). This improves the efficiency of the overall method by allowing automated dipole selection, and it makes the results less sensitive to physiological noise in fMRI retinotopy data. Finally, the iteratively reweighted least squares (IRLS) method was used to reduce the contribution from stimulus locations with high residual error for robust estimation of visual evoked responses.

摘要

视网膜约束源估计 (RCSE) 是一种使用脑磁图 (MEG) 或脑电图 (EEG) 无创测量早期视觉区域激活时间过程的方法。与传统的等效电流偶极子或分布式源模型不同,使用多个、视网膜映射的刺激位置同时约束解,可以估计视觉区域 V1、V2 和 V3 的独立波形,尽管它们彼此非常接近。我们描述了改进该方法可靠性和效率的修改。首先,我们发现增加视觉刺激的数量和大小会导致对噪声不太敏感的源估计。其次,为了创建更准确的正向解决方案,我们已经明确地对单个视觉刺激的皮质点扩展进行了建模。偶极子表示为皮质表面上的扩展补丁,它考虑了在 V1、V2 和 V3 中的每个位置的估计感受野大小,以及来自视觉区域的对侧、同侧、背侧和腹侧部分的贡献。第三,我们实施了地图拟合程序,将模板变形以匹配从功能磁共振成像 (fMRI) 得出的个体受试者的视网膜图。这通过允许自动偶极子选择提高了整体方法的效率,并使结果对 fMRI 视网膜图数据中的生理噪声不太敏感。最后,使用迭代重加权最小二乘法 (IRLS) 方法来减少具有高残余误差的刺激位置的贡献,以稳健地估计视觉诱发电响应。

相似文献

引用本文的文献

5
A population receptive field model of the magnetoencephalography response.人群感受野模型的脑磁图反应。
Neuroimage. 2021 Dec 1;244:118554. doi: 10.1016/j.neuroimage.2021.118554. Epub 2021 Sep 10.
6
Sparse EEG/MEG source estimation via a group lasso.通过组套索进行稀疏脑电图/脑磁图源估计
PLoS One. 2017 Jun 12;12(6):e0176835. doi: 10.1371/journal.pone.0176835. eCollection 2017.

本文引用的文献

9
Population receptive field estimates in human visual cortex.人类视觉皮层中的群体感受野估计
Neuroimage. 2008 Jan 15;39(2):647-60. doi: 10.1016/j.neuroimage.2007.09.034. Epub 2007 Sep 29.
10
Visual field maps in human cortex.人类大脑皮层中的视野图。
Neuron. 2007 Oct 25;56(2):366-83. doi: 10.1016/j.neuron.2007.10.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验