Hu C R, Kattawar G W, Parkin M E, Herb P
Appl Opt. 1987 Oct 1;26(19):4159-73. doi: 10.1364/AO.26.004159.
The symmetry theorems on the complete forward and backward scattering Mueller matrices for light scattering from a single dielectric scatterer (as opposed to an ensemble of scatterers) are systematically and thoroughly analyzed. Symmetry operations considered include discrete rotations about the incident direction and mirror planes not coinciding with the scattering plane. For forward scattering we find sixteen different symmetry shapes (not including the totally asymmetric one), which may be classified into five symmetry classes, with identical reductions in the forward scattering matrices for all symmetry shapes that fall into the same symmetry class. For backward scattering we find only four different symmetry shapes, which may be classified into only two symmetry classes. The forward scattering symmetry theorems also lead to a symmetry theorem on the total extinction cross section. Based on the conclusions of this work it should be possible to design quick and nondestructive methods for the identification of certain small objects, when suitable partial information about the objects to be identified is already available. A promising practical example is given.
对单个电介质散射体(而非散射体集合)的光散射完整前向和后向散射穆勒矩阵的对称性定理进行了系统而全面的分析。所考虑的对称操作包括绕入射方向的离散旋转以及不与散射平面重合的镜面。对于前向散射,我们发现了十六种不同的对称形状(不包括完全不对称的形状),这些形状可分为五个对称类,属于同一对称类的所有对称形状在前向散射矩阵中的简化形式相同。对于后向散射,我们仅发现了四种不同的对称形状,这些形状仅可分为两个对称类。前向散射对称性定理还导出了关于总消光截面的对称性定理。基于这项工作的结论,当已经获得关于待识别物体的适当部分信息时,应该有可能设计出快速且无损的方法来识别某些小物体。给出了一个有前景的实际示例。