Suppr超能文献

一种基因组和转录组学方法,用于对有乳腺癌既往史的患者中原发性和继发性卵巢癌进行鉴别诊断。

A genomic and transcriptomic approach for a differential diagnosis between primary and secondary ovarian carcinomas in patients with a previous history of breast cancer.

机构信息

Department of Translational Research, Institut Curie, 26 rue d'Ulm, 75248 Paris, Cedex 05, France.

出版信息

BMC Cancer. 2010 May 21;10:222. doi: 10.1186/1471-2407-10-222.

Abstract

BACKGROUND

The distinction between primary and secondary ovarian tumors may be challenging for pathologists. The purpose of the present work was to develop genomic and transcriptomic tools to further refine the pathological diagnosis of ovarian tumors after a previous history of breast cancer.

METHODS

Sixteen paired breast-ovary tumors from patients with a former diagnosis of breast cancer were collected. The genomic profiles of paired tumors were analyzed using the Affymetrix GeneChip Mapping 50 K Xba Array or Genome-Wide Human SNP Array 6.0 (for one pair), and the data were normalized with ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) algorithm or Partek Genomic Suite, respectively. The transcriptome of paired samples was analyzed using Affymetrix GeneChip Human Genome U133 Plus 2.0 Arrays, and the data were normalized with gc-Robust Multi-array Average (gcRMA) algorithm. A hierarchical clustering of these samples was performed, combined with a dataset of well-identified primary and secondary ovarian tumors.

RESULTS

In 12 of the 16 paired tumors analyzed, the comparison of genomic profiles confirmed the pathological diagnosis of primary ovarian tumor (n = 5) or metastasis of breast cancer (n = 7). Among four cases with uncertain pathological diagnosis, genomic profiles were clearly distinct between the ovarian and breast tumors in two pairs, thus indicating primary ovarian carcinomas, and showed common patterns in the two others, indicating metastases from breast cancer. In all pairs, the result of the transcriptomic analysis was concordant with that of the genomic analysis.

CONCLUSIONS

In patients with ovarian carcinoma and a previous history of breast cancer, SNP array analysis can be used to distinguish primary and secondary ovarian tumors. Transcriptomic analysis may be used when primary breast tissue specimen is not available.

摘要

背景

原发性和继发性卵巢肿瘤的鉴别可能对病理学家具有挑战性。本研究的目的是开发基因组和转录组工具,以进一步细化乳腺癌病史后的卵巢肿瘤的病理诊断。

方法

收集了 16 对来自曾被诊断为乳腺癌的患者的配对乳房-卵巢肿瘤。使用 Affymetrix GeneChip Mapping 50 K Xba 阵列或全基因组人类 SNP 阵列 6.0(一对)分析配对肿瘤的基因组谱,并分别使用 ITALICS(迭代和替代归一化和 SNP 阵列的拷贝数调用)算法或 Partek 基因组套件对数据进行归一化。使用 Affymetrix GeneChip Human Genome U133 Plus 2.0 阵列分析配对样本的转录组,并使用 gc-Robust Multi-array Average (gcRMA) 算法对数据进行归一化。对这些样本进行层次聚类分析,并结合一组明确的原发性和继发性卵巢肿瘤的数据集。

结果

在分析的 16 对配对肿瘤中的 12 对中,基因组谱的比较证实了原发性卵巢肿瘤(n=5)或乳腺癌转移(n=7)的病理诊断。在四个病理诊断不确定的病例中,在两对中卵巢和乳腺肿瘤之间的基因组谱明显不同,因此表明为原发性卵巢癌,而在另外两对中则显示出共同的模式,表明为乳腺癌转移。在所有配对中,转录组分析的结果与基因组分析的结果一致。

结论

在患有卵巢癌和乳腺癌病史的患者中,SNP 阵列分析可用于区分原发性和继发性卵巢肿瘤。当无法获得原发性乳腺组织标本时,可以使用转录组分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c8/2891634/cf02926f5acb/1471-2407-10-222-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验