Graduate Program in Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
Dev Cell. 2010 May 18;18(5):841-8. doi: 10.1016/j.devcel.2010.04.007.
Clathrin-coated vesicle formation is responsible for membrane traffic to and from the endocytic pathway during receptor-mediated endocytosis and organelle biogenesis, influencing how cells relate to their environment. Generating these vesicles involves self-assembly of clathrin molecules into a latticed coat on membranes that recruits receptors and organizes protein machinery necessary for budding. Here we define a molecular mechanism regulating clathrin lattice formation by obtaining structural information from co-crystals of clathrin subunits. Low resolution X-ray diffraction data (7.9-9.0 A) was analyzed using a combination of molecular replacement with an energy-minimized model and noncrystallographic symmetry averaging. Resulting topological information revealed two conformations of the regulatory clathrin light chain bound to clathrin heavy chain. Based on protein domain positions, mutagenesis, and biochemical assays, we identify an electrostatic interaction between the clathrin subunits that allows the observed conformational variation in clathrin light chains to alter the conformation of the clathrin heavy chain and thereby regulates assembly.
网格蛋白有被包被小泡的形成负责受体介导的胞吞作用和细胞器发生过程中内吞途径的膜运输,影响细胞如何与环境相互作用。这些小泡的产生涉及网格蛋白分子在膜上自我组装成晶格状的外壳,募集受体并组织出出芽所必需的蛋白质机器。在这里,我们通过获得网格蛋白亚基共晶的结构信息来定义调节网格蛋白晶格形成的分子机制。使用分子置换与能量最小化模型和非晶体对称平均的组合分析低分辨率 X 射线衍射数据(7.9-9.0 A)。所得拓扑信息揭示了两种结合在网格蛋白重链上的调节性网格蛋白轻链的构象。基于蛋白结构域位置、突变和生化分析,我们确定了网格蛋白亚基之间的静电相互作用,允许观察到的网格蛋白轻链构象变化改变网格蛋白重链的构象,从而调节组装。