Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
PLoS Comput Biol. 2010 Sep 9;6(9):e1000926. doi: 10.1371/journal.pcbi.1000926.
In eukaryotic cells, the internalization of extracellular cargo via the endocytic machinery is an important regulatory process required for many essential cellular functions. The role of cooperative protein-protein and protein-membrane interactions in the ubiquitous endocytic pathway in mammalian cells, namely the clathrin-dependent endocytosis, remains unresolved. We employ the Helfrich membrane Hamiltonian together with surface evolution methodology to address how the shapes and energetics of vesicular-bud formation in a planar membrane are stabilized by presence of the clathrin-coat assembly. Our results identify a unique dual role for the tubulating protein epsin: multiple epsins localized spatially and orientationally collectively play the role of a curvature inducing capsid; in addition, epsin serves the role of an adapter in binding the clathrin coat to the membrane. Our results also suggest an important role for the clathrin lattice, namely in the spatial- and orientational-templating of epsins. We suggest that there exists a critical size of the coat above which a vesicular bud with a constricted neck resembling a mature vesicle is stabilized. Based on the observed strong dependence of the vesicle diameter on the bending rigidity, we suggest that the variability in bending stiffness due to variations in membrane composition with cell type can explain the experimentally observed variability on the size of clathrin-coated vesicles, which typically range 50-100 nm. Our model also provides estimates for the number of epsins involved in stabilizing a coated vesicle, and without any direct fitting reproduces the experimentally observed shapes of vesicular intermediates as well as their probability distributions quantitatively, in wildtype as well as CLAP IgG injected neuronal cell experiments. We have presented a minimal mesoscale model which quantitatively explains several experimental observations on the process of vesicle nucleation induced by the clathrin-coated assembly prior to vesicle scission in clathrin dependent endocytosis.
在真核细胞中,通过内吞作用机制将细胞外货物内化是许多基本细胞功能所必需的重要调节过程。在哺乳动物细胞中普遍存在的内吞途径(即网格蛋白依赖性内吞作用)中,协同蛋白-蛋白和蛋白-膜相互作用的作用仍未得到解决。我们采用赫夫里奇膜哈密顿量和表面演化方法来解决在平面膜中,囊泡-芽的形成形状和能量如何通过网格蛋白外套组装来稳定。我们的结果确定了网格蛋白结合蛋白 epsin 的独特双重作用:多个 epsin 局部定位和定向共同发挥曲率诱导衣壳的作用;此外,epsin 还作为将网格蛋白外套与膜结合的接头发挥作用。我们的结果还表明网格蛋白晶格具有重要作用,即在 epsin 的空间和定向模板化方面。我们提出,存在一个关键的外壳大小,超过这个大小,带有收缩颈部的囊泡芽就可以稳定存在,类似于成熟的囊泡。基于观察到的囊泡直径与弯曲刚度之间的强烈依赖性,我们提出,由于膜成分随细胞类型的变化而导致的弯曲刚度的变化可以解释实验观察到的网格蛋白包被囊泡大小的可变性,通常范围为 50-100nm。我们的模型还提供了用于稳定包被囊泡所需的 epsin 数量的估计值,并且在没有任何直接拟合的情况下,定量地再现了实验观察到的囊泡中间体的形状以及它们的概率分布,无论是在野生型还是 CLAP IgG 注射神经元细胞实验中都是如此。我们提出了一个最小的介观模型,该模型定量地解释了几个实验观察结果,即在网格蛋白依赖性内吞作用之前,网格蛋白包被组装诱导的囊泡成核过程,以及在囊泡分裂之前的过程。