Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York, USA.
Nat Chem Biol. 2010 Jul;6(7):527-33. doi: 10.1038/nchembio.371. Epub 2010 May 23.
Protein splicing is a post-translational modification in which an intein domain excises itself out of a host protein. Here, we investigate how the steps in the splicing process are coordinated so as to maximize the production of the final splice products and minimize the generation of undesired cleavage products. Our approach has been to prepare a branched intermediate (and analogs thereof) of the Mycobacterium xenopi DNA gyrase A (Mxe GyrA) intein using protein semisynthesis. Kinetic analysis of these molecules indicates that the high fidelity of this protein-splicing reaction results from the penultimate step in the process (intein-succinimide formation) being rate-limiting. NMR experiments indicate that formation of the branched intermediate affects the local structure around the amide bond that is cleaved during succinimide formation. We propose that this structural change reflects a reorganization of the catalytic apparatus to accelerate succinimide formation at the C-terminal splice junction.
蛋白质剪接是一种翻译后修饰过程,其中内肽域从宿主蛋白中自我切除。在这里,我们研究了剪接过程的各个步骤是如何协调的,以最大限度地提高最终剪接产物的产量,同时最小化产生不需要的切割产物。我们的方法是使用蛋白质半合成制备分枝中间体(及其类似物)分枝杆菌 Xenopi DNA 拓扑异构酶 A(Mxe GyrA)内含肽。对这些分子的动力学分析表明,该蛋白质剪接反应的高保真度源于该过程的倒数第二步(内含肽-琥珀酰亚胺形成)是限速步骤。NMR 实验表明,分枝中间体的形成会影响在琥珀酰亚胺形成过程中被切割的酰胺键周围的局部结构。我们提出,这种结构变化反映了催化装置的重新组织,以加速 C 末端剪接连接处的琥珀酰亚胺形成。