Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ 08544, USA.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10383-8. doi: 10.1073/pnas.1005892107. Epub 2010 May 24.
Heavy electronic states originating from the f atomic orbitals underlie a rich variety of quantum phases of matter. We use atomic scale imaging and spectroscopy with the scanning tunneling microscope to examine the novel electronic states that emerge from the uranium f states in URu(2)Si(2). We find that, as the temperature is lowered, partial screening of the f electrons' spins gives rise to a spatially modulated Kondo-Fano resonance that is maximal between the surface U atoms. At T = 17.5 K, URu(2)Si(2) is known to undergo a second-order phase transition from the Kondo lattice state into a phase with a hidden order parameter. From tunneling spectroscopy, we identify a spatially modulated, bias-asymmetric energy gap with a mean-field temperature dependence that develops in the hidden order state. Spectroscopic imaging further reveals a spatial correlation between the hidden order gap and the Kondo resonance, suggesting that the two phenomena involve the same electronic states.
重电子态源于 f 原子轨道,为物质的丰富量子相奠定了基础。我们使用扫描隧道显微镜的原子尺度成像和光谱学来研究 URu(2)Si(2) 中铀 f 态产生的新型电子态。我们发现,随着温度降低,f 电子自旋的部分屏蔽导致空间调制的 Kondo-Fano 共振,其最大值出现在表面 U 原子之间。在 T = 17.5 K 时,URu(2)Si(2)已知经历了从近藤格子态到具有隐藏序参量的相的二级相变。从隧道光谱学中,我们确定了在隐藏序相中发展的具有平均场温度依赖性的空间调制、偏压不对称能隙。光谱成像进一步揭示了隐藏序隙与近藤共振之间的空间相关性,表明这两个现象涉及相同的电子态。