Université Paris-Est, LIGM-UMR CNRS 8049, 5 Bd Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée cedex 2, France.
IEEE/ACM Trans Comput Biol Bioinform. 2010 Oct-Dec;7(4):628-35. doi: 10.1109/TCBB.2010.53.
Recent techniques increase rapidly the amount of our knowledge on interactions between proteins. The interpretation of these new information depends on our ability to retrieve known substructures in the data, the Protein-Protein Interactions (PPIs) networks. In an algorithmic point of view, it is an hard task since it often leads to NP-hard problems. To overcome this difficulty, many authors have provided tools for querying patterns with a restricted topology, i.e., paths or trees in PPI networks. Such restriction leads to the development of fixed parameter tractable (FPT) algorithms, which can be practicable for restricted sizes of queries. Unfortunately, Graph Homomorphism is a W[1]-hard problem, and hence, no FPT algorithm can be found when patterns are in the shape of general graphs. However, Dost et al. gave an algorithm (which is not implemented) to query graphs with a bounded treewidth in PPI networks (the treewidth of the query being involved in the time complexity). In this paper, we propose another algorithm for querying pattern in the shape of graphs, also based on dynamic programming and the color-coding technique. To transform graphs queries into trees without loss of informations, we use feedback vertex set coupled to a node duplication mechanism. Hence, our algorithm is FPT for querying graphs with a bounded size of their feedback vertex set. It gives an alternative to the treewidth parameter, which can be better or worst for a given query. We provide a python implementation which allows us to validate our implementation on real data. Especially, we retrieve some human queries in the shape of graphs into the fly PPI network.
最近的技术迅速增加了我们对蛋白质相互作用的了解。这些新信息的解释取决于我们从数据中检索已知子结构的能力,即蛋白质-蛋白质相互作用 (PPI) 网络。从算法的角度来看,这是一项艰巨的任务,因为它通常会导致 NP 难问题。为了克服这个困难,许多作者提供了用于查询具有受限拓扑结构的模式的工具,即在 PPI 网络中的路径或树。这种限制导致了固定参数可处理 (FPT) 算法的发展,这些算法对于受限大小的查询是可行的。不幸的是,图同构是 W[1]-难问题,因此,当模式为一般图形形状时,无法找到 FPT 算法。然而,Dost 等人给出了一种用于在 PPI 网络中查询具有有界树宽的图形的算法(查询的树宽涉及时间复杂度)。在本文中,我们提出了另一种用于查询图形形状模式的算法,该算法也基于动态规划和颜色编码技术。为了在不丢失信息的情况下将图形查询转换为树,我们使用反馈顶点集并结合节点复制机制。因此,我们的算法对于具有有界反馈顶点集大小的查询是 FPT 的。它提供了一种替代树宽参数的方法,对于给定的查询,该参数可能更好或更差。我们提供了一个 Python 实现,允许我们在真实数据上验证我们的实现。特别是,我们将一些人类查询以图形的形式检索到果蝇 PPI 网络中。