Institut für Softwaretechnik und Theoretische Informatik, Technische Universtität Berlin, 10587 Berlin, Germany.
IEEE/ACM Trans Comput Biol Bioinform. 2011 Sep-Oct;8(5):1296-308. doi: 10.1109/TCBB.2011.19.
We study the NP-hard LIST-COLORED GRAPH MOTIF problem which, given an undirected list-colored graph G = (V, E) and a multiset M of colors, asks for maximum-cardinality sets S ⊆ V and M' ⊆ M such that G[S] is connected and contains exactly (with respect to multiplicity) the colors in M'. LIST-COLORED GRAPH MOTIF has applications in the analysis of biological networks. We study LIST-COLORED GRAPH MOTIF with respect to three different parameterizations. For the parameters motif size |M| and solution size |S|, we present fixed-parameter algorithms, whereas for the parameter |V| - |M|, we show W[1]-hardness for general instances and achieve fixed-parameter tractability for a special case of LIST-COLORED GRAPH MOTIF. We implemented the fixed-parameter algorithms for parameters |M| and |S|, developed further speed-up heuristics for these algorithms, and applied them in the context of querying protein-interaction networks, demonstrating their usefulness for realistic instances. Furthermore, we show that extending the request for motif connectedness to stronger demands, such as biconnectedness or bridge-connectedness leads to W[1]-hard problems when the parameter is the motif size |M|.
我们研究 NP 难的 LIST-COLORED GRAPH MOTIF 问题,给定一个无向的 LIST-COLORED 图 G = (V, E) 和一个多色集合 M,要求找到最大基数的集合 S ⊆ V 和 M' ⊆ M,使得 G[S] 是连通的,并且恰好包含 M' 中的颜色(按多重性计算)。LIST-COLORED GRAPH MOTIF 在分析生物网络方面有应用。我们针对三个不同的参数化研究 LIST-COLORED GRAPH MOTIF。对于参数 motif size |M| 和 solution size |S|,我们提出了固定参数算法,而对于参数 |V| - |M|,我们证明了一般实例的 W[1]-hardness,并针对 LIST-COLORED GRAPH MOTIF 的特殊情况实现了固定参数可解性。我们为参数 |M| 和 |S| 实现了固定参数算法,为这些算法开发了进一步的加速启发式方法,并将它们应用于查询蛋白质相互作用网络的上下文中,证明了它们在实际实例中的有用性。此外,我们表明,当参数是 motif size |M| 时,将对 motif 连通性的请求扩展到更强的要求,例如双连通性或桥连通性,会导致 W[1]-hard 问题。