Lauflabor Locomotion Laboratory, University of Jena, Dornburger Strasse 23, Jena, Germany.
Bioinspir Biomim. 2010 Jun;5(2):026006. doi: 10.1088/1748-3182/5/2/026006. Epub 2010 May 24.
Humans can run within a wide range of speeds without thinking about stabilizing strategies. The leg properties seem to be adjusted automatically without need for sensory feedback. In this work, the dynamics of human running are represented by the planar spring mass model. Within this framework, for higher speeds, running patterns can be stable without control strategies. Here, potential strategies that provide stability over a broader range of running patterns are considered and these theoretical predictions are compared to human running data. Periodic running solutions are identified and analyzed with respect to their stability. The control strategies are assumed as linear adaptations of the leg parameters-leg angle, leg stiffness and leg length-during the swing phase. To evaluate the applied control strategies regarding their influence on landing behavior, two parameters are introduced: the velocity of the foot relative to the ground (ground speed matching) and the foot's angle of approach. The results show that periodic running solutions can be stabilized and that control strategies, which guarantee running stability, are redundant. For any swing leg kinematics (adaptation of the leg angle and the leg length), running stability can be achieved by adapting the leg stiffness in anticipation of the ground contact.
人类可以在无需思考稳定策略的情况下在很宽的速度范围内奔跑。腿部特性似乎会自动调整,而无需感官反馈。在这项工作中,人体跑步的动力学通过平面弹簧质量模型来表示。在这个框架内,对于更高的速度,跑步模式可以在没有控制策略的情况下保持稳定。在这里,考虑了可以在更广泛的跑步模式范围内提供稳定性的潜在策略,并将这些理论预测与人类跑步数据进行了比较。针对稳定性,确定并分析了周期性跑步解决方案。控制策略被假设为在摆动阶段对腿部参数(腿部角度、腿部刚度和腿部长度)进行线性自适应。为了评估所应用的控制策略对着陆行为的影响,引入了两个参数:脚相对于地面的速度(地面速度匹配)和脚的接近角度。结果表明,周期性跑步解决方案可以稳定,并且可以通过预先适应地面接触来调整腿部刚度来实现跑步稳定性的控制策略是多余的。对于任何摆动腿运动学(腿部角度和腿部长度的适应),通过适应腿部刚度可以实现跑步稳定性。