Sharbafi Maziar A, Seyfarth Andre, Zhao Guoping
Electrical and Control Engineering, School of Engineering, University of TehranTehran, Iran.
Lauflabor Locomotion Laboratory, Institute of Sport Science, Centre for Cognitive Science, Technische Universität DarmstadtDarmstadt, Germany.
Front Neurorobot. 2017 Sep 4;11:44. doi: 10.3389/fnbot.2017.00044. eCollection 2017.
A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: : redirecting the center of mass by exerting forces on the ground. : cycling the legs between ground contacts. : maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.
比较生物力学的一个主要目标是在进化背景下理解运动的基本物理学原理。对腿部运动的这种理解导致了从模仿自然到借鉴与物理世界相互作用的策略的转变,这些策略涉及受生物启发的腿部机器人或机器人辅助设备的设计和控制。受自然启发,腿部运动可由三个本质上相互关联的运动子功能组成:通过在地面上施加力来重新定位质心;在地面接触之间循环腿部动作;保持身体姿势。通过这三个子功能,可以在将它们表述为更简单的分离任务的情况下理解、设计和控制腿部运动系统。在考虑腿部运动时,以协调的方式实现运动子功能之间的协调就成为了一个额外的问题。然而,生物运动表明,对每个子功能进行适当的设计和控制可以简化协调。这意味着在不同的运动子功能控制器之间只需要有限的感官信息交换,从而实现运动控制系统设想的模块化架构。在本文中,我们除了展示它们在解释人类控制策略方面的能力外,还介绍了在模型、机器人和外骨骼上实现不同运动子功能控制器的不同研究。