Institute of Medical Genetics, Shandong University School of Medicine, Jinan, People's Republic of China.
J Bone Miner Res. 2010 Oct;25(10):2155-64. doi: 10.1002/jbmr.117.
DMP1 mutations in autosomal recessive hypophosphatemic rickets (ARHR) patients and mice lacking Dmp1 display an overlapping pathophysiology, such as hypophosphatemia. However, subtle differences exist between the mouse model and human ARHR patients. These differences could be due to a species specificity of human versus mouse, or it may be that the mutant DMP1 in humans maintains partial function of DMP1. In this study we report a deformed tooth phenotype in a human DMP1 deletion mutation case. Unexpectedly, the deletion of nucleotides 1484 to 1490 (c.1484_1490delCTATCAC, delMut, resulting in replacement of the last 18 residues with 33 random amino acids) showed a severe dentin and enamel defect similar to a dentinogenesis imperfecta (DI) III-like phenotype. To address the molecular mechanism behind this phenotype, we generated delMut transgenic mice with the endogenous Dmp1 gene removed. These mutant mice did not recapture the abnormal phenotype observed in the human patient but displayed a mild rachitic tooth phenotype in comparison with that in the Dmp1-null mice, suggesting that the DI III-like phenotype may be due to an as-yet-undetermined acquired gene modifier. The mechanism studies showed that the mutant fragment maintains partial function of DMP1 such as stimulating MAP kinase signaling in vitro. Last, the in vitro and in vivo data support a role of odontoblasts in the control of fibroblast growth factor 23 (FGF-23) regulation during early postnatal development, although this regulation on Pi homeostasis is likely limited.
常染色体隐性低磷血症佝偻病(ARHR)患者 DMP1 突变和缺乏 Dmp1 的小鼠表现出重叠的病理生理学特征,如低磷血症。然而,小鼠模型和人类 ARHR 患者之间存在细微差异。这些差异可能是由于人类与小鼠之间的物种特异性,也可能是因为人类突变的 DMP1 保持了 DMP1 的部分功能。在这项研究中,我们报告了一个人类 DMP1 缺失突变病例的畸形牙表型。出乎意料的是,缺失核苷酸 1484 到 1490(c.1484_1490delCTATCAC,delMut,导致最后 18 个残基被 33 个随机氨基酸取代)显示出严重的牙本质和釉质缺陷,类似于牙本质生成不全症(DI)III 样表型。为了解释这种表型的分子机制,我们构建了内源 Dmp1 基因缺失的 delMut 转基因小鼠。这些突变小鼠没有重现人类患者中观察到的异常表型,但与 Dmp1 基因敲除小鼠相比,表现出轻微的佝偻病牙齿表型,表明 DI III 样表型可能是由于尚未确定的获得性基因修饰剂。机制研究表明,突变片段保持 DMP1 的部分功能,如体外刺激 MAP 激酶信号通路。最后,体外和体内数据支持成牙本质细胞在控制成纤维细胞生长因子 23(FGF-23)在出生后早期发育过程中的调节作用,尽管这种对 Pi 稳态的调节可能是有限的。