Suppr超能文献

通过信息测度和贝叶斯滤波检测左心室运动异常。

Detection of left ventricular motion abnormality via information measures and bayesian filtering.

作者信息

Punithakumar Kumaradevan, Ben Ayed Ismail, Ross Ian G, Islam Ali, Chong Jaron, Li Shuo

机构信息

GEHealthcare, London, ON N6A 4V2, Canada.

出版信息

IEEE Trans Inf Technol Biomed. 2010 Jul;14(4):1106-13. doi: 10.1109/TITB.2010.2050778. Epub 2010 May 24.

Abstract

We present an original information theoretic measure of heart motion based on the Shannon's differential entropy (SDE), which allows heart wall motion abnormality detection. Based on functional images, which are subject to noise and segmentation inaccuracies, heart wall motion analysis is acknowledged as a difficult problem, and as such, incorporation of prior knowledge is crucial for improving accuracy. Given incomplete, noisy data and a dynamic model, the Kalman filter, a well-known recursive Bayesian filter, is devised in this study to the estimation of the left ventricular (LV) cavity points. However, due to similarity between the statistical information of normal and abnormal heart motions, detecting and classifying abnormality is a challenging problem, which we investigate with a global measure based on the SDE. We further derive two other possible information theoretic abnormality detection criteria, one is based on Rényi entropy and the other on Fisher information. The proposed methods analyze wall motion quantitatively by constructing distributions of the normalized radial distance estimates of the LV cavity. Using 269 x 20 segmented LV cavities of short-axis MRI obtained from 30 subjects, the experimental analysis demonstrates that the proposed SDE criterion can lead to a significant improvement over other features that are prevalent in the literature related to the LV cavity, namely, mean radial displacement and mean radial velocity.

摘要

我们提出了一种基于香农微分熵(SDE)的心脏运动原始信息论度量方法,该方法可用于检测心脏壁运动异常。基于易受噪声和分割不准确影响的功能图像,心脏壁运动分析被认为是一个难题,因此,纳入先验知识对于提高准确性至关重要。在给定不完整、有噪声的数据和动态模型的情况下,本研究设计了卡尔曼滤波器(一种著名的递归贝叶斯滤波器)来估计左心室(LV)腔点。然而,由于正常和异常心脏运动的统计信息之间存在相似性,检测和分类异常是一个具有挑战性的问题,我们使用基于SDE的全局度量来进行研究。我们进一步推导了另外两种可能的信息论异常检测标准,一种基于雷尼熵,另一种基于费希尔信息。所提出的方法通过构建LV腔归一化径向距离估计的分布来定量分析壁运动。使用从30名受试者获得的269×20个短轴MRI分割的LV腔进行实验分析,结果表明,所提出的SDE标准相对于文献中与LV腔相关的其他常见特征(即平均径向位移和平均径向速度)可带来显著改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验