Suppr超能文献

分析与计算剖析分子特征的多重性。

Analysis and computational dissection of molecular signature multiplicity.

机构信息

Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York, United States of America.

出版信息

PLoS Comput Biol. 2010 May 20;6(5):e1000790. doi: 10.1371/journal.pcbi.1000790.

Abstract

Molecular signatures are computational or mathematical models created to diagnose disease and other phenotypes and to predict clinical outcomes and response to treatment. It is widely recognized that molecular signatures constitute one of the most important translational and basic science developments enabled by recent high-throughput molecular assays. A perplexing phenomenon that characterizes high-throughput data analysis is the ubiquitous multiplicity of molecular signatures. Multiplicity is a special form of data analysis instability in which different analysis methods used on the same data, or different samples from the same population lead to different but apparently maximally predictive signatures. This phenomenon has far-reaching implications for biological discovery and development of next generation patient diagnostics and personalized treatments. Currently the causes and interpretation of signature multiplicity are unknown, and several, often contradictory, conjectures have been made to explain it. We present a formal characterization of signature multiplicity and a new efficient algorithm that offers theoretical guarantees for extracting the set of maximally predictive and non-redundant signatures independent of distribution. The new algorithm identifies exactly the set of optimal signatures in controlled experiments and yields signatures with significantly better predictivity and reproducibility than previous algorithms in human microarray gene expression datasets. Our results shed light on the causes of signature multiplicity, provide computational tools for studying it empirically and introduce a framework for in silico bioequivalence of this important new class of diagnostic and personalized medicine modalities.

摘要

分子特征是为诊断疾病和其他表型以及预测临床结果和治疗反应而创建的计算或数学模型。人们普遍认识到,分子特征是最近高通量分子检测所带来的最重要的转化和基础科学发展之一。高通量数据分析的一个令人困惑的现象是分子特征的普遍多重性。多重性是数据分析不稳定的一种特殊形式,即相同数据或来自同一人群的不同样本使用不同的分析方法会导致不同但显然具有最大预测性的特征。这种现象对生物发现以及下一代患者诊断和个性化治疗的发展具有深远的影响。目前,特征多重性的原因和解释尚不清楚,已经提出了几种解释它的假设,其中一些假设往往相互矛盾。我们提出了一种分子特征多重性的正式特征描述和一种新的高效算法,该算法提供了在独立于分布的情况下提取最大预测性和非冗余特征集的理论保证。该新算法在受控实验中准确地识别出最佳特征集,并在人类微阵列基因表达数据集上产生了比以前的算法具有更好的预测性和可重复性的特征。我们的结果揭示了特征多重性的原因,为研究其提供了计算工具,并引入了用于此类重要的新诊断和个性化医学模式的计算生物等效性的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f521/2873900/2359656497fe/pcbi.1000790.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验