Suppr超能文献

甲状腺癌个体化诊断标志物的建立与验证。

Development and validation of an individualized diagnostic signature in thyroid cancer.

机构信息

Department of Thyroid Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.

Department of Endocrinology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.

出版信息

Cancer Med. 2018 Apr;7(4):1135-1140. doi: 10.1002/cam4.1397. Epub 2018 Mar 9.

Abstract

New molecular signatures are needed to improve the diagnosis of thyroid cancer (TC) and avoid unnecessary surgeries. In this study, we aimed to develop a robust and individualized diagnostic signature in TC. Gene expression profiles of tumor and nontumor samples were from 13 microarray datasets of Gene Expression Omnibus (GEO) database and one RNA-sequencing dataset of The Cancer Genome Atlas (TCGA). A total of 1246 samples were divided into a training set (N = 435), a test set (N = 247), and one independent validation set (N = 564). In the training set, 115 most frequent differentially expressed genes (DEGs) among the included datasets were used to construct 6555 gene pairs, and 19 significant pairs were detected to further construct the diagnostic signature by a penalized generalized linear model. The signature showed a good diagnostic ability for TC in the training set (area under receiver operating characteristic curve (AUC) = 0.976), test set (AUC = 0.960), and TCGA dataset (AUC = 0.979). Subgroup analyses showed consistent results when considering the type of nontumor samples and microarray platforms. When compared with two existing molecular signatures in the diagnosis of thyroid nodules, the signature (AUC = 0.933) also showed a higher diagnostic ability (AUC = 0.886 for a 7-gene signature and AUC = 0.892 for a 10-gene signature). In conclusion, our study developed and validated an individualized diagnostic signature in TC. Large-scale prospective studies were needed to further validate its diagnostic ability.

摘要

需要新的分子标志物来改善甲状腺癌 (TC) 的诊断并避免不必要的手术。本研究旨在建立 TC 中稳健且个体化的诊断标志物。肿瘤和非肿瘤样本的基因表达谱来自基因表达综合数据库 (GEO) 数据库的 13 个微阵列数据集和癌症基因组图谱 (TCGA) 的一个 RNA 测序数据集。共 1246 个样本分为训练集 (N = 435)、测试集 (N = 247) 和一个独立验证集 (N = 564)。在训练集中,使用 115 个包含数据集之间最常见的差异表达基因 (DEGs) 构建了 6555 个基因对,通过惩罚广义线性模型检测到 19 个显著对,进一步构建诊断特征。该特征在训练集 (AUC = 0.976)、测试集 (AUC = 0.960) 和 TCGA 数据集 (AUC = 0.979) 中均显示出良好的 TC 诊断能力。亚组分析显示,考虑非肿瘤样本的类型和微阵列平台时,结果一致。与甲状腺结节诊断的两种现有分子标志物相比,该特征 (AUC = 0.933) 也显示出更高的诊断能力 (7 基因特征 AUC = 0.886,10 基因特征 AUC = 0.892)。总之,本研究建立并验证了 TC 的个体化诊断特征。需要进行大规模前瞻性研究来进一步验证其诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a049/5911625/dfb0d205b2dd/CAM4-7-1135-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验