Suppr超能文献

探针水平和探针集模型在小样本基因表达数据中的比较。

A comparison of probe-level and probeset models for small-sample gene expression data.

机构信息

Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA.

出版信息

BMC Bioinformatics. 2010 May 26;11:281. doi: 10.1186/1471-2105-11-281.

Abstract

BACKGROUND

Statistical methods to tentatively identify differentially expressed genes in microarray studies typically assume larger sample sizes than are practical or even possible in some settings.

RESULTS

The performance of several probe-level and probeset models was assessed graphically and numerically using three spike-in datasets. Based on the Affymetrix GeneChip, a novel nested factorial model was developed and found to perform competitively on small-sample spike-in experiments.

CONCLUSIONS

Statistical methods with test statistics related to the estimated log fold change tend to be more consistent in their performance on small-sample gene expression data. For such small-sample experiments, the nested factorial model can be a useful statistical tool. This method is implemented in freely-available R code (affyNFM), available with a tutorial document at http://www.stat.usu.edu/~jrstevens.

摘要

背景

在微阵列研究中,用于初步识别差异表达基因的统计方法通常假设更大的样本量,而在某些情况下,实际或甚至可能无法实现这些样本量。

结果

使用三个 Spike-in 数据集,以图形和数值方式评估了几种探针水平和探针集模型的性能。基于 Affymetrix GeneChip,开发了一种新颖的嵌套因子模型,并发现它在小样本 Spike-in 实验中具有竞争力。

结论

与估计的对数倍变化相关的检验统计量的统计方法在小样本基因表达数据上的性能往往更一致。对于这种小样本实验,嵌套因子模型可以是一个有用的统计工具。这种方法以免费的 R 代码(affyNFM)实现,在 http://www.stat.usu.edu/~jrstevens 上提供了教程文档。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06b3/2901368/193ab69b771f/1471-2105-11-281-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验