Suppr超能文献

针状聚合物颗粒诱导细胞膜瞬时破裂。

Needle-shaped polymeric particles induce transient disruption of cell membranes.

机构信息

Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.

出版信息

J R Soc Interface. 2010 Aug 6;7 Suppl 4(Suppl 4):S403-10. doi: 10.1098/rsif.2010.0134.focus. Epub 2010 May 26.

Abstract

Nano- and microparticles of various shapes have recently been introduced for various drug-delivery applications. Shape of particles has been shown to have an impact on various processes including circulation, vascular adhesion and phagocytosis. Here, we assess the role of particle geometry and surface chemistry in their interactions with cell membranes. Using representative particles of different shape (spheres, elongated and flat particles), size (500 nm-1 microm) and surface chemistry (positively and negatively charged), we evaluated the response of endothelial cells to particles. While spherical and elliptical disc-shaped particles did not have an impact on cell spreading and motility, needle-shaped particles induced significant changes in the same. Further studies revealed that needle-shaped particles induced disruption of cell membranes as indicated by the release of lactate dehydrogenase and uptake of extracellular calcein. The effect of needle-shaped particles on cells was transient and was reversed over a time period of 1-48 h depending on particle parameters.

摘要

近年来,各种形状的纳米和微米颗粒已被用于各种药物输送应用。颗粒的形状已被证明会影响包括循环、血管黏附和吞噬在内的各种过程。在这里,我们评估了颗粒几何形状和表面化学性质在与细胞膜相互作用中的作用。使用不同形状(球体、细长和扁平颗粒)、大小(500nm-1 微米)和表面化学性质(带正电荷和负电荷)的代表性颗粒,我们评估了颗粒对内皮细胞的反应。虽然球形和椭圆形盘状颗粒对细胞的扩散和运动没有影响,但针状颗粒则会显著改变这些细胞的形态。进一步的研究表明,针状颗粒会导致细胞膜破裂,这表现为乳酸脱氢酶的释放和细胞外钙黄绿素的摄取。针状颗粒对细胞的影响是短暂的,并且取决于颗粒参数,在 1-48 小时的时间内会逆转。

相似文献

1
Needle-shaped polymeric particles induce transient disruption of cell membranes.
J R Soc Interface. 2010 Aug 6;7 Suppl 4(Suppl 4):S403-10. doi: 10.1098/rsif.2010.0134.focus. Epub 2010 May 26.
2
Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms.
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17247-52. doi: 10.1073/pnas.1305000110. Epub 2013 Oct 7.
3
Polymeric nanoparticles of different sizes overcome the cell membrane barrier.
Eur J Pharm Biopharm. 2013 Jun;84(2):265-74. doi: 10.1016/j.ejpb.2013.01.024. Epub 2013 Feb 16.
4
Shape-specific polymeric nanomedicine: emerging opportunities and challenges.
Exp Biol Med (Maywood). 2011 Jan;236(1):20-9. doi: 10.1258/ebm.2010.010243.
5
Role of particle size in phagocytosis of polymeric microspheres.
Pharm Res. 2008 Aug;25(8):1815-21. doi: 10.1007/s11095-008-9562-y. Epub 2008 Mar 29.
6
Shape Effect on Particle-Lipid Bilayer Membrane Association, Cellular Uptake, and Cytotoxicity.
ACS Appl Mater Interfaces. 2015 Nov 4;7(43):23993-4000. doi: 10.1021/acsami.5b06781. Epub 2015 Oct 26.
7
Polymer particles that switch shape in response to a stimulus.
Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11205-10. doi: 10.1073/pnas.1000346107. Epub 2010 Jun 14.
8
Effect of calcium carbonate particle shape on phagocytosis and pro-inflammatory response in differentiated THP-1 macrophages.
Biochem Biophys Res Commun. 2017 Aug 19;490(2):499-505. doi: 10.1016/j.bbrc.2017.06.069. Epub 2017 Jun 15.
9
Exploring the influence of silicon oxide microchips shape on cellular uptake using imaging flow cytometry.
Mikrochim Acta. 2024 Aug 21;191(9):554. doi: 10.1007/s00604-024-06631-7.
10
In vivo evaluation of vascular-targeted spheroidal microparticles for imaging and drug delivery application in atherosclerosis.
Atherosclerosis. 2014 Nov;237(1):279-86. doi: 10.1016/j.atherosclerosis.2014.09.025. Epub 2014 Sep 30.

引用本文的文献

2
Herbal Medicine Nanocrystals: A Potential Novel Therapeutic Strategy.
Molecules. 2023 Aug 31;28(17):6370. doi: 10.3390/molecules28176370.
3
3D DEM Simulations and Experiments on Spherical Impactor Penetrating into the Elongated Particles.
Materials (Basel). 2023 Feb 16;16(4):1664. doi: 10.3390/ma16041664.
4
Computational Indicator Approach for Assessment of Nanotoxicity of Two-Dimensional Nanomaterials.
Nanomaterials (Basel). 2022 Feb 15;12(4):650. doi: 10.3390/nano12040650.
5
3D-Printing of Structure-Controlled Antigen Nanoparticles for Vaccine Delivery.
Biomacromolecules. 2020 Jun 8;21(6):2043-2048. doi: 10.1021/acs.biomac.9b01775. Epub 2020 Apr 13.
6
Study of mitochondrial swelling, membrane fluidity and ROS production induced by nano-TiO and prevented by Fe incorporation.
Toxicol Res (Camb). 2019 Jul 24;8(5):711-722. doi: 10.1039/c9tx00143c. eCollection 2019 Sep 1.
7
Shape dependent cytotoxicity of PLGA-PEG nanoparticles on human cells.
Sci Rep. 2017 Aug 4;7(1):7315. doi: 10.1038/s41598-017-07588-9.
9
Haemolytic activity of soil from areas of varying podoconiosis endemicity in Ethiopia.
PLoS One. 2017 May 11;12(5):e0177219. doi: 10.1371/journal.pone.0177219. eCollection 2017.

本文引用的文献

1
Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging.
Adv Mater. 2008 May 5;20(9):1630-1635. doi: 10.1002/adma.200800004.
2
Endocytosis and Intracellular Distribution of PLGA Particles in Endothelial Cells: Effect of Particle Geometry.
Macromol Rapid Commun. 2010 Jan 18;31(2):142-8. doi: 10.1002/marc.200900592. Epub 2009 Dec 8.
3
Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009 Jul-Aug;1(4):391-404. doi: 10.1002/wnan.40.
4
Red blood cell-mimicking synthetic biomaterial particles.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21495-9. doi: 10.1073/pnas.0907127106. Epub 2009 Dec 14.
5
Tissue-penetrating delivery of compounds and nanoparticles into tumors.
Cancer Cell. 2009 Dec 8;16(6):510-20. doi: 10.1016/j.ccr.2009.10.013.
6
Size and shape effects in the biodistribution of intravascularly injected particles.
J Control Release. 2010 Feb 15;141(3):320-7. doi: 10.1016/j.jconrel.2009.10.014. Epub 2009 Oct 27.
7
Preparation of polymeric carriers for drug delivery with different shape and size using an electric jet.
Curr Pharm Biotechnol. 2009 Sep;10(6):600-8. doi: 10.2174/138920109789069323. Epub 2009 Sep 1.
8
Physical approaches to biomaterial design.
Nat Mater. 2009 Jan;8(1):15-23. doi: 10.1038/nmat2344.
9
The effect of particle design on cellular internalization pathways.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11613-8. doi: 10.1073/pnas.0801763105. Epub 2008 Aug 12.
10
Factors affecting the clearance and biodistribution of polymeric nanoparticles.
Mol Pharm. 2008 Jul-Aug;5(4):505-15. doi: 10.1021/mp800051m. Epub 2008 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验