Departments of Biomedical Engineering and Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712.
Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17247-52. doi: 10.1073/pnas.1305000110. Epub 2013 Oct 7.
Size, surface charge, and material compositions are known to influence cell uptake of nanoparticles. However, the effect of particle geometry, i.e., the interplay between nanoscale shape and size, is less understood. Here we show that when shape is decoupled from volume, charge, and material composition, under typical in vitro conditions, mammalian epithelial and immune cells preferentially internalize disc-shaped, negatively charged hydrophilic nanoparticles of high aspect ratios compared with nanorods and lower aspect-ratio nanodiscs. Endothelial cells also prefer nanodiscs, however those of intermediate aspect ratio. Interestingly, unlike nanospheres, larger-sized hydrogel nanodiscs and nanorods are internalized more efficiently than their smallest counterparts. Kinetics, efficiency, and mechanisms of uptake are all shape-dependent and cell type-specific. Although macropinocytosis is used by both epithelial and endothelial cells, epithelial cells uniquely internalize these nanoparticles using the caveolae-mediated pathway. Human umbilical vein endothelial cells, on the other hand, use clathrin-mediated uptake for all shapes and show significantly higher uptake efficiency compared with epithelial cells. Using results from both upright and inverted cultures, we propose that nanoparticle internalization is a complex manifestation of three shape- and size-dependent parameters: particle surface-to-cell membrane contact area, i.e., particle-cell adhesion, strain energy for membrane deformation, and sedimentation or local particle concentration at the cell membrane. These studies provide a fundamental understanding on how nanoparticle uptake in different mammalian cells is influenced by the nanoscale geometry and is critical for designing improved nanocarriers and predicting nanomaterial toxicity.
尺寸、表面电荷和材料组成已知会影响纳米颗粒被细胞摄取。然而,颗粒几何形状(即纳米级形状和尺寸之间的相互作用)的影响却知之甚少。在这里,我们表明,当形状与体积、电荷和材料组成分离时,在典型的体外条件下,与纳米棒和低纵横比纳米盘相比,哺乳动物上皮细胞和免疫细胞优先内化具有高纵横比的盘状带负电荷的亲水性纳米颗粒。内皮细胞也更喜欢纳米盘,但更喜欢中等纵横比的纳米盘。有趣的是,与纳米球不同,较大尺寸的水凝胶纳米盘和纳米棒比其最小尺寸的同类更有效地被内化。摄取的动力学、效率和机制都是形状依赖性和细胞类型特异性的。虽然上皮细胞和内皮细胞都使用巨胞饮作用,但上皮细胞独特地使用小窝蛋白介导的途径内化这些纳米颗粒。另一方面,人脐静脉内皮细胞使用网格蛋白介导的摄取方式摄取所有形状的纳米颗粒,与上皮细胞相比,其摄取效率显著更高。使用直立和倒置培养的结果,我们提出纳米颗粒内化是三个与形状和尺寸相关的参数的复杂表现:颗粒表面与细胞膜接触面积,即颗粒-细胞黏附、细胞膜变形的应变能以及细胞膜处的沉降或局部颗粒浓度。这些研究提供了对不同哺乳动物细胞中纳米颗粒摄取如何受纳米级几何形状影响的基本理解,对于设计改进的纳米载体和预测纳米材料毒性至关重要。
Proc Natl Acad Sci U S A. 2013-10-7
Acc Chem Res. 2021-7-20
J Mater Chem B. 2023-7-12
Nanoscale Adv. 2025-7-16
Chem Biomed Imaging. 2025-1-21
Discov Nano. 2024-6-22
Mater Today Bio. 2024-4-26
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024
Proc Natl Acad Sci U S A. 2013-6-10
Proc Natl Acad Sci U S A. 2013-2-11
Adv Mater. 2012-10-11
Nanoscale. 2012-6-29
Annu Rev Biomed Eng. 2012-4-18