DWI-Leibniz-Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstrasse 50, D-52056 Aachen, Germany.
Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita 565-0871, Osaka, Japan.
Biomacromolecules. 2020 Jun 8;21(6):2043-2048. doi: 10.1021/acs.biomac.9b01775. Epub 2020 Apr 13.
Targeted delivery of antigens to immune cells using micro/nanocarriers may serve as a therapeutic application for vaccination. However, synthetic carriers have potential drawbacks including cytotoxicity, low encapsulation efficiency of antigen, and lack of a morphological design, which limit the translation of the delivery system to clinical use. Here, we report a carrier-free and three-dimensional (3D)-shape-designed antigen nanoparticle by multiphoton lithography-based 3D-printing. This simple, versatile 3D-printing approach provides freedom for the precise design of particle shapes with a nanoscale resolution. Importantly, shape-designed antigen nanoparticles with distinct aspect ratios show shape-dependent immune responses. The 3D-printing approach for the rational design of nanomaterials with increasing safety, complexity, and efficacy offers an emerging platform to develop vaccine delivery systems and mechanistic understanding.
使用微/纳米载体将抗原靶向递送至免疫细胞可作为疫苗接种的治疗应用。然而,合成载体具有潜在的缺点,包括细胞毒性、抗原包封效率低以及缺乏形态设计,这限制了递药系统向临床应用的转化。在这里,我们通过基于多光子光刻的 3D 打印报告了一种无载体和三维(3D)形状设计的抗原纳米颗粒。这种简单、通用的 3D 打印方法提供了精确设计具有纳米级分辨率的颗粒形状的自由度。重要的是,具有不同纵横比的形状设计的抗原纳米颗粒表现出形状依赖性的免疫反应。用于设计具有更高安全性、复杂性和疗效的纳米材料的 3D 打印方法为开发疫苗递药系统和深入了解其机制提供了一个新兴平台。