Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
Biol Direct. 2010 May 27;5:38. doi: 10.1186/1745-6150-5-38.
An important facet of early biological evolution is the selection of chiral enantiomers for molecules such as amino acids and sugars. The origin of this symmetry breaking is a long-standing question in molecular evolution. Previous models addressing this question include particular kinetic properties such as autocatalysis or negative cross catalysis.
We propose here a more general kinetic formalism for early enantioselection, based on our previously described Graded Autocatalysis Replication Domain (GARD) model for prebiotic evolution in molecular assemblies. This model is adapted here to the case of chiral molecules by applying symmetry constraints to mutual molecular recognition within the assembly. The ensuing dynamics shows spontaneous chiral symmetry breaking, with transitions towards stationary compositional states (composomes) enriched with one of the two enantiomers for some of the constituent molecule types. Furthermore, one or the other of the two antipodal compositional states of the assembly also shows time-dependent selection.
It follows that chiral selection may be an emergent consequence of early catalytic molecular networks rather than a prerequisite for the initiation of primeval life processes. Elaborations of this model could help explain the prevalent chiral homogeneity in present-day living cells.
早期生物进化的一个重要方面是对分子(如氨基酸和糖)的手性对映体的选择。这种对称性破缺的起源是分子进化中长期存在的问题。以前解决这个问题的模型包括特定的动力学特性,如自催化或负交叉催化。
我们在这里提出了一种更一般的早期手性选择的动力学形式,基于我们之前描述的分子组装中前生物进化的分级自催化复制域(GARD)模型。该模型通过在组装内对分子间的相互分子识别施加对称性约束,适用于手性分子的情况。由此产生的动力学表现出手性对称性自发破缺,向富含两种对映体之一的稳定组成状态(组成体)转变,对于某些组成分子类型。此外,组装的两个对映体组成状态之一或另一个也表现出随时间的选择性。
因此,手性选择可能是早期催化分子网络的一个涌现结果,而不是原始生命过程启动的先决条件。该模型的细化可能有助于解释当今活细胞中普遍存在的手性同质性。