Suppr超能文献

使用圆柱形和人体模型对硼中子俘获治疗的剂量规划计算进行验证。

Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms.

机构信息

Department of Physics, POB 64, FI-00014 University of Helsinki, Finland.

出版信息

Phys Med Biol. 2010 Jun 21;55(12):3515-33. doi: 10.1088/0031-9155/55/12/016. Epub 2010 May 28.

Abstract

In this paper, the accuracy of dose planning calculations for boron neutron capture therapy (BNCT) of brain and head and neck cancer was studied at the FiR 1 epithermal neutron beam. A cylindrical water phantom and an anthropomorphic head phantom were applied with two beam aperture-to-surface distances (ASD). The calculations using the simulation environment for radiation application (SERA) treatment planning system were compared to neutron activation measurements with Au and Mn foils, photon dose measurements with an ionization chamber and the reference simulations with the MCNP5 code. Photon dose calculations using SERA differ from the ionization chamber measurements by 2-13% (disagreement increased along the depth in the phantom), but are in agreement with the MCNP5 calculations within 2%. The (55)Mn(n,gamma) and (197)Au(n,gamma) reaction rates calculated using SERA agree within 10% and 8%, respectively, with the measurements and within 5% with the MCNP5 calculations at depths >0.5 cm from the phantom surface. The (55)Mn(n,gamma) reaction rate represents the nitrogen and boron depth dose within 1%. Discrepancy in the SERA fast neutron dose calculation (of up to 37%) is corrected if the biased fast neutron dose calculation option is not applied. Reduced voxel cell size (<or=0.5 cm) improves the SERA calculation accuracy on the phantom surface. Despite the slight overestimation of the epithermal neutrons and underestimation of the thermal neutrons in the beam model, neutron calculation accuracy with the SERA system is sufficient for reliable BNCT treatment planning with the two studied treatment distances. The discrepancy between measured and calculated photon dose remains unsatisfactorily high for depths >6 cm from the phantom surface. Increasing discrepancy along the phantom depth is expected to be caused by the inaccurately determined effective point of the ionization chamber.

摘要

本文研究了 FiR1 超热中子束用于脑和头颈部癌症硼中子俘获治疗(BNCT)时的剂量计划计算精度。使用圆柱形水模体和人体头部模型,采用两种束流孔径-表面距离(ASD)。利用辐射应用模拟环境(SERA)治疗计划系统进行的计算与金和锰箔的中子活化测量、电离室的光子剂量测量以及 MCNP5 代码的参考模拟进行了比较。SERA 中的光子剂量计算与电离室测量值的差异为 2-13%(在体模中深度增加时差异增大),但与 MCNP5 计算值的差异在 2%以内。利用 SERA 计算的 (55)Mn(n,gamma) 和 (197)Au(n,gamma) 反应率与测量值的差异分别在 10%和 8%以内,与 MCNP5 计算值的差异在 0.5cm 以上的深度为 5%以内。(55)Mn(n,gamma) 反应率在 1%以内代表氮和硼的深度剂量。如果不应用有偏差的快中子剂量计算选项,则可以修正 SERA 快中子剂量计算中的差异(最大可达 37%)。在体模表面,减小体素单元尺寸(<=0.5cm)可以提高 SERA 计算的准确性。尽管束模型中对超热中子的略微高估和对热中子的低估,但 SERA 系统的中子计算精度足以用于两种研究治疗距离的可靠 BNCT 治疗计划。从体模表面起深度大于 6cm 处,测量值和计算值之间的光子剂量差异仍然非常高。沿体模深度的差异增大预计是由于电离室的有效点确定不准确所致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验