Suppr超能文献

二维 CMUT 阵列的体积弹性成像。

Volumetric elasticity imaging with a 2-D CMUT array.

机构信息

Medical Physics Department, University of Wisconsin, Madison, Wisconsin 53705, USA.

出版信息

Ultrasound Med Biol. 2010 Jun;36(6):978-90. doi: 10.1016/j.ultrasmedbio.2010.03.019.

Abstract

This article reports the use of a two-dimensional (2-D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio-frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare three-dimensional (3-D) elasticity imaging methods. Typical 2-D motion tracking for elasticity image formation was compared with three different methods of 3-D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2-D search), planar search, combination of multiple planes and plane independent guided search. The cross-correlation between the predeformation and motion-compensated postdeformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3-D modulus reconstruction, high quality 3-D displacement estimates yielded accurate and low noise modulus reconstruction.

摘要

本文报道了使用二维(2-D)电容式微机械超声换能器(CMUT)从简单超声体模的较大体积中获取射频(RF)回波数据,以比较三种三维(3-D)弹性成像方法。典型的弹性图像形成的二维运动跟踪与三种不同的三维运动跟踪方法进行了比较,使用均方和差(SSD)作为相似性度量。算法之间的差异在于它们跟踪高程运动的程度:根本不跟踪(2-D 搜索)、平面搜索、多个平面的组合以及独立于平面的引导搜索。在预变形和运动补偿后变形的 RF 回波场之间使用互相关来量化运动跟踪精度。病变信噪比用于量化图像质量。跟踪精度和应变图像质量通常随着跟踪复杂性的增加而提高。当用作三维模量重建的输入时,高质量的三维位移估计产生准确且低噪声的模量重建。

相似文献

1
Volumetric elasticity imaging with a 2-D CMUT array.
Ultrasound Med Biol. 2010 Jun;36(6):978-90. doi: 10.1016/j.ultrasmedbio.2010.03.019.
2
Three-dimensional Ultrasound Elasticity Imaging on an Automated Breast Volume Scanning System.
Ultrason Imaging. 2017 Nov;39(6):369-392. doi: 10.1177/0161734617712238. Epub 2017 Jun 6.
3
A 3-D Region-Growing Motion-Tracking Method for Ultrasound Elasticity Imaging.
Ultrasound Med Biol. 2018 Aug;44(8):1638-1653. doi: 10.1016/j.ultrasmedbio.2018.04.011. Epub 2018 May 18.
4
Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer.
Phys Med Biol. 2008 Aug 7;53(15):4169-83. doi: 10.1088/0031-9155/53/15/011. Epub 2008 Jul 17.
5
Convolutional Neural Network-Based Speckle Tracking for Ultrasound Strain Elastography: An Unsupervised Learning Approach.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 May;70(5):354-367. doi: 10.1109/TUFFC.2023.3243539. Epub 2023 Apr 26.
6
Evaluating the Improvement in Shear Wave Speed Image Quality Using Multidimensional Directional Filters in the Presence of Reflection Artifacts.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Aug;63(8):1049-1063. doi: 10.1109/TUFFC.2016.2558662. Epub 2016 Apr 27.
8
Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
Phys Med Biol. 2020 Mar 19;65(6):065008. doi: 10.1088/1361-6560/ab735f.
9
A coupled subsample displacement estimation method for ultrasound-based strain elastography.
Phys Med Biol. 2015 Nov 7;60(21):8347-64. doi: 10.1088/0031-9155/60/21/8347. Epub 2015 Oct 12.
10
A GPU-Accelerated 3-D Coupled Subsample Estimation Algorithm for Volumetric Breast Strain Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Apr;64(4):694-705. doi: 10.1109/TUFFC.2017.2661821. Epub 2017 Jan 31.

引用本文的文献

1
Wafer-Bonding Fabricated CMUT Device with Parylene Coating.
Micromachines (Basel). 2021 May 4;12(5):516. doi: 10.3390/mi12050516.
2
An Improved Region-Growing Motion Tracking Method Using More Prior Information for 3-D Ultrasound Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Mar;67(3):580-597. doi: 10.1109/TUFFC.2019.2948984. Epub 2019 Oct 23.
4
A 3-D Region-Growing Motion-Tracking Method for Ultrasound Elasticity Imaging.
Ultrasound Med Biol. 2018 Aug;44(8):1638-1653. doi: 10.1016/j.ultrasmedbio.2018.04.011. Epub 2018 May 18.
5
Detecting Regional Stiffness Changes in Aortic Aneurysmal Geometries Using Pressure-Normalized Strain.
Ultrasound Med Biol. 2017 Oct;43(10):2372-2394. doi: 10.1016/j.ultrasmedbio.2017.06.002. Epub 2017 Jul 17.
6
Three-dimensional Ultrasound Elasticity Imaging on an Automated Breast Volume Scanning System.
Ultrason Imaging. 2017 Nov;39(6):369-392. doi: 10.1177/0161734617712238. Epub 2017 Jun 6.
7
Improving three-dimensional mechanical imaging of breast lesions with principal component analysis.
Med Phys. 2017 Aug;44(8):4194-4203. doi: 10.1002/mp.12372. Epub 2017 Jul 12.
8
A GPU-Accelerated 3-D Coupled Subsample Estimation Algorithm for Volumetric Breast Strain Elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Apr;64(4):694-705. doi: 10.1109/TUFFC.2017.2661821. Epub 2017 Jan 31.
9
3D Quasi-Static Ultrasound Elastography With Plane Wave In Vivo.
IEEE Trans Med Imaging. 2017 Feb;36(2):357-365. doi: 10.1109/TMI.2016.2596706. Epub 2016 Jul 29.
10
A Tactile Sensor for Ultrasound Imaging Systems.
IEEE Sens J. 2016 Feb 15;16(4):1044-1053. doi: 10.1109/JSEN.2015.2493144. Epub 2015 Oct 26.

本文引用的文献

1
A generalized speckle tracking algorithm for ultrasonic strain imaging using dynamic programming.
Ultrasound Med Biol. 2009 Nov;35(11):1863-79. doi: 10.1016/j.ultrasmedbio.2009.05.016. Epub 2009 Aug 13.
2
Multilevel hybrid 2D strain imaging algorithm for ultrasound sector/phased arrays.
Med Phys. 2009 Jun;36(6):2098-106. doi: 10.1118/1.3121426.
3
Quantitative three-dimensional elasticity imaging from quasi-static deformation: a phantom study.
Phys Med Biol. 2009 Feb 7;54(3):757-79. doi: 10.1088/0031-9155/54/3/019. Epub 2009 Jan 9.
4
A quality-guided displacement tracking algorithm for ultrasonic elasticity imaging.
Med Image Anal. 2009 Apr;13(2):286-96. doi: 10.1016/j.media.2008.10.007. Epub 2008 Nov 8.
6
3D estimation of soft biological tissue deformation from radio-frequency ultrasound volume acquisitions.
Med Image Anal. 2009 Feb;13(1):116-27. doi: 10.1016/j.media.2008.07.003. Epub 2008 Jul 30.
7
Three-dimensional electrode displacement elastography using the Siemens C7F2 fourSight four-dimensional ultrasound transducer.
Ultrasound Med Biol. 2008 Aug;34(8):1307-16. doi: 10.1016/j.ultrasmedbio.2008.01.007. Epub 2008 Mar 28.
8
High-speed ultrasound volumetric imaging system. II. Parallel processing and image display.
IEEE Trans Ultrason Ferroelectr Freq Control. 1991;38(2):109-15. doi: 10.1109/58.68467.
9
Current time-domain methods for assessing tissue motion by analysis from reflected ultrasound echoes-a review.
IEEE Trans Ultrason Ferroelectr Freq Control. 1993;40(2):84-102. doi: 10.1109/58.212556.
10
Target detectability in acoustic elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(5):1128-33. doi: 10.1109/58.796118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验