Nat Mater. 2010 Jul;9(7):546-9. doi: 10.1038/nmat2771. Epub 2010 May 30.
Recent discovery of spin-polarized single-Dirac-cone insulators, whose variants can host magnetism and superconductivity, has generated widespread research activity in condensed-matter and materials-physics communities. Some of the most interesting topological phenomena, however, require topological insulators to be placed in multiply connected, highly constrained geometries with magnets and superconductors, all of which thus require a large number of functional variants with materials design flexibility as well as electronic, magnetic and superconducting tunability. Given the optimum materials, topological properties open up new vistas in spintronics, quantum computing and fundamental physics. We have extended the search for topological insulators from the binary Bi-based series to the ternary thermoelectric Heusler compounds. Here we show that, although a large majority of the well-known Heuslers such as TiNiSn and LuNiBi are rather topologically trivial, the distorted LnPtSb-type (such as LnPtBi or LnPdBi, Ln = f(n) lanthanides) compounds belonging to the half-Heusler subclass harbour Z(2) = -1 topological insulator parent states, where Z(2) is the band purity product index. Our results suggest that half-Heuslers provide a new platform for deriving a host of topologically exotic compounds and their nanoscale or thin-film device versions through the inherent flexibility of their lattice parameter, spin-orbit strength and magnetic moment tunability paving the way for the realization of multifunctional topological devices.
最近发现的自旋极化单狄拉克锥绝缘体,其变体可以承载磁性和超导性,在凝聚态和材料物理领域引起了广泛的研究活动。然而,一些最有趣的拓扑现象要求拓扑绝缘体处于多连通、高度受限的几何形状中,其中包含磁铁和超导体,所有这些都需要大量具有材料设计灵活性以及电子、磁性和超导可调性的功能变体。考虑到最佳材料,拓扑性质为自旋电子学、量子计算和基础物理开辟了新的前景。我们已经将拓扑绝缘体的研究从二元 Bi 基系列扩展到了三元热电 Heusler 化合物。在这里,我们表明,尽管大多数众所周知的 Heusler 化合物(如 TiNiSn 和 LuNiBi)在拓扑上相当简单,但属于半 Heusler 子类的扭曲 LnPtSb 型(如 LnPtBi 或 LnPdBi,Ln = f(n) 镧系元素)化合物具有 Z(2) = -1 的拓扑绝缘体母体状态,其中 Z(2)是带纯度乘积指数。我们的结果表明,半 Heusler 化合物通过其晶格参数、自旋轨道强度和磁矩可调性的固有灵活性,为衍生出一系列拓扑奇异化合物及其纳米或薄膜器件版本提供了一个新的平台,为多功能拓扑器件的实现铺平了道路。