Suppr超能文献

利用 3T 的 FLAIR 图像对老年人的脑白质高信号进行自动分割。

Automatic segmentation of white matter hyperintensities in the elderly using FLAIR images at 3T.

机构信息

Cognitive Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada.

出版信息

J Magn Reson Imaging. 2010 Jun;31(6):1311-22. doi: 10.1002/jmri.22004.

Abstract

PURPOSE

To determine the precision and accuracy of an automated method for segmenting white matter hyperintensities (WMH) on fast fluid-attenuated inversion-recovery (FLAIR) images in elderly brains at 3T.

MATERIALS AND METHODS

FLAIR images from 18 individuals (60-82 years, 9 females) with WMH burdens ranging from 1-80 cm(3) were used. The protocol included the removal of clearly hyperintense voxels; two-class fuzzy C-means clustering (FCM); and thresholding to segment probable WMH. Two false-positive minimization (FPM) methods using white matter templates were tested. Precision was assessed by adding synthetic hyperintense voxels to brain slices. Accuracy was validated by comparing automatic and manual segmentations. Whole-brain, voxel-wise metrics of similarity, under- and overestimation were used to evaluate both precision and accuracy.

RESULTS

Precision was high, as the lowest accuracy in the synthetic datasets was 93%. Both FPM strategies successfully improved overall accuracy. Whole-brain accuracy for the FCM segmentation alone ranged from 45%-81%, which improved to 75%-85% using the FPM strategies.

CONCLUSION

The method was accurate across the range of WMH burden typically seen in the elderly. Accuracy levels achieved or exceeded those of other approaches using multispectral and/or more sophisticated pattern recognition methods.

摘要

目的

确定一种在 3T 下对老年人大脑快速液体衰减反转恢复(FLAIR)图像上的脑白质高信号(WMH)进行分割的自动化方法的精度和准确性。

材料和方法

使用了 18 名个体(60-82 岁,9 名女性)的 FLAIR 图像,这些个体的 WMH 负担从 1-80cm³不等。该方案包括去除明显的高信号体素;两类别模糊 C 均值聚类(FCM);以及进行阈值分割以确定可能的 WMH。测试了两种使用白质模板的假阳性最小化(FPM)方法。通过向脑切片中添加合成高信号体素来评估精度。通过比较自动和手动分割来验证准确性。使用相似性的全脑、体素指标,以及低估和高估来评估精度和准确性。

结果

精度很高,因为在合成数据集的最低准确性为 93%。两种 FPM 策略都成功地提高了整体准确性。FCM 分割的全脑准确性在 45%-81%之间,使用 FPM 策略后提高到 75%-85%。

结论

该方法在老年人中常见的 WMH 负担范围内具有准确性。所达到的准确性水平或超过了使用多光谱和/或更复杂的模式识别方法的其他方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f50/2905619/0f118258d9c3/jmri0031-1311-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验