Suppr超能文献

基于多级病变特征的磁共振成像中白质高信号的改进自动分割

Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features.

作者信息

Rincón M, Díaz-López E, Selnes P, Vegge K, Altmann M, Fladby T, Bjørnerud A

机构信息

Department of Artificial Intelligence, UNED, Madrid, Spain.

Department of Neurology, Akershus University Hospital, Oslo, Norway.

出版信息

Neuroinformatics. 2017 Jul;15(3):231-245. doi: 10.1007/s12021-017-9328-y.

Abstract

Brain white matter hyperintensities (WMHs) are linked to increased risk of cerebrovascular and neurodegenerative diseases among the elderly. Consequently, detection and characterization of WMHs are of significant clinical importance. We propose a novel approach for WMH segmentation from multi-contrast MRI where both voxel-based and lesion-based information are used to improve overall performance in both volume-oriented and object-oriented metrics. Our segmentation method (AMOS-2D) consists of four stages following a "generate-and-test" approach: pre-processing, Gaussian white matter (WM) modelling, hierarchical multi-threshold WMH segmentation and object-based WMH filtering using support vector machines. Data from 28 subjects was used in this study covering a wide range of lesion loads. Volumetric T1-weighted images and 2D fluid attenuated inversion recovery (FLAIR) images were used as basis for the WM model and lesion masks defined manually in each subject by experts were used for training and evaluating the proposed method. The method obtained an average agreement (in terms of the Dice similarity coefficient, DSC) with experts equivalent to inter-expert agreement both in terms of WMH number (DSC = 0.637 vs. 0.651) and volume (DSC = 0.743 vs. 0.781). It allowed higher accuracy in detecting WMH compared to alternative methods tested and was further found to be insensitive to WMH lesion burden. Good agreement with expert annotations combined with stable performance largely independent of lesion burden suggests that AMOS-2D will be a valuable tool for fully automated WMH segmentation in patients with cerebrovascular and neurodegenerative pathologies.

摘要

脑白质高信号(WMHs)与老年人脑血管疾病和神经退行性疾病风险增加有关。因此,WMHs的检测和特征描述具有重要的临床意义。我们提出了一种从多对比度磁共振成像(MRI)中分割WMHs的新方法,该方法利用基于体素和基于病变的信息来提高在体积导向和对象导向指标方面的整体性能。我们的分割方法(AMOS-2D)采用“生成并测试”方法,包括四个阶段:预处理、高斯白质(WM)建模、分层多阈值WMH分割以及使用支持向量机进行基于对象的WMH滤波。本研究使用了28名受试者的数据,涵盖了广泛的病变负荷范围。体积T1加权图像和二维液体衰减反转恢复(FLAIR)图像被用作WM模型的基础,专家在每个受试者中手动定义的病变掩码用于训练和评估所提出的方法。该方法在WMH数量(DSC = 0.637 vs. 0.651)和体积(DSC = 0.743 vs. 0.781)方面与专家的平均一致性(根据Dice相似系数,DSC)等同于专家之间的一致性。与测试的其他方法相比,它在检测WMH方面具有更高的准确性,并且进一步发现对WMH病变负荷不敏感。与专家注释的良好一致性以及在很大程度上独立于病变负荷的稳定性能表明,AMOS-2D将成为脑血管和神经退行性疾病患者全自动WMH分割的有价值工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验