Department of Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine, Los Angeles, California 90033, USA.
J Cell Biochem. 2010 Jun 1;110(3):609-19. doi: 10.1002/jcb.22570.
Increasing evidence indicates that the post-translational modifications of the histone proteins play critical roles in all eukaryotic DNA-templated processes. To gain further biological insights into two of these modifications, the mono- and trimethylation of histone H4 lysine 20 (H4K20me1 and H4K20me3), ChIP-chip experiments were performed to identify the precise genomic regions on human chromosomes 21 and 22 occupied by these two modifications. Detailed analysis revealed that H4K20me1 was preferentially enriched within specific genes; most significantly between the first approximately 5% and 20% of gene bodies. In contrast, H4K20me3 was preferentially targeted to repetitive elements. Among genes enriched in H4K20me3, the modification was typically targeted to a small region approximately 1 kb upstream of transcription start. Our collective findings strongly suggest that H4K20me1 and H4K20me3 are both physically and functionally distinct. We next sought to determine the role of H4K20me1 in transcription since this has been controversial. Following the reduction of PR-Set7/Set8/KMT5a and H4K20me1 in cells by RNAi, all H4K20me1-associated genes analyzed displayed an approximately 2-fold increase in gene expression; H4K20me3-associated genes displayed no changes. Similar results were obtained using a catalytically dead dominant negative PR-Set7 indicating that H4K20me1, itself, is essential for the selective transcriptional repression of H4K20me1-associated genes. Furthermore, we determined that the H4K20me1-associated DNA sequences were sufficient to nucleate H4K20me1 and induce repression in vivo. Our findings reveal the molecular mechanisms of a mammalian transcriptional repressive pathway whereby the DNA sequences within specific gene bodies are sufficient to nucleate the monomethylation of H4K20 which, in turn, reduces gene expression by half.
越来越多的证据表明,组蛋白的翻译后修饰在所有真核生物 DNA 模板过程中都起着关键作用。为了进一步深入了解这两种修饰中的两种,即组蛋白 H4 赖氨酸 20 的单甲基化和三甲基化(H4K20me1 和 H4K20me3),进行了 ChIP-chip 实验,以确定这两种修饰在人类染色体 21 和 22 上精确占据的基因组区域。详细分析表明,H4K20me1 优先富集在特定基因内;最显著的是在基因体的前约 5%到 20%之间。相比之下,H4K20me3 优先靶向重复元件。在富含 H4K20me3 的基因中,修饰通常靶向转录起始点上游约 1kb 的小区域。我们的综合研究结果强烈表明,H4K20me1 和 H4K20me3 在物理和功能上都是不同的。接下来,我们试图确定 H4K20me1 在转录中的作用,因为这一直存在争议。在用 RNAi 降低细胞中的 PR-Set7/Set8/KMT5a 和 H4K20me1 后,分析的所有与 H4K20me1 相关的基因的表达水平都增加了约 2 倍;与 H4K20me3 相关的基因没有变化。使用催化失活的显性负 PR-Set7 也得到了类似的结果,表明 H4K20me1 本身对于与 H4K20me1 相关的基因的选择性转录抑制是必不可少的。此外,我们确定了与 H4K20me1 相关的 DNA 序列足以在体内引发 H4K20me1 的形成并诱导抑制。我们的发现揭示了一种哺乳动物转录抑制途径的分子机制,即特定基因体内的 DNA 序列足以引发 H4K20 的单甲基化,进而使基因表达减半。