Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307, Stanford, CA 94305, USA.
Radiology. 2010 Aug;256(2):519-27. doi: 10.1148/radiol.10091858. Epub 2010 Jun 1.
To develop and test human kinase insert domain receptor (KDR)-targeted microbubbles (MBs) (MB(KDR)) for imaging KDR at the molecular level and for monitoring antiangiogenic therapy in a human colon cancer xenograft tumor model in mice.
Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. A heterodimeric peptide that binds to human KDR with low nanomolar affinity (K(D) = 0.5 nmol/L) was coupled onto the surface of perfluorobutane-containing lipid-shelled MBs (MB(KDR)). Binding specificity of MB(KDR) to human KDR and cross-reactivity with murine vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) were tested in cell culture under flow shear stress conditions (at 100 sec(-1)). In vivo binding specificity of MB(KDR) to VEGFR2 was tested in human LS174T colon cancer xenografts in mice with a 40-MHz ultrasonographic (US) transducer. Targeted contrast material-enhanced US imaging signal by using MB(KDR) was longitudinally measured during 6 days in tumors with (n = 6) and without (n = 6) antiangiogenic treatment (anti-VEGF antibody). Ex vivo VEGFR2 staining and microvessel density analysis were performed. Significant differences were evaluated (t, Mann-Whitney, or Wilcoxon test).
Cell culture experiments showed four times greater binding specificity of MB(KDR) to human KDR and cross-reactivity to murine VEGFR2 (P < or = .01). In vivo imaging signal was more than three times higher (P = .01) with MB(KDR) compared with control MBs and decreased significantly (approximately fourfold lower, P = .03) following in vivo receptor blocking with anti-VEGFR2 antibody. One day after initiation of antiangiogenic therapy, imaging signal was significantly decreased (approximately 46% lower, P = .02) in treated versus untreated tumors; it remained significantly lower (range, 46%-84% decreased; P = .038) during the following 5 days. Microvessel density was significantly reduced (P = .04) in treated (mean, 7.3 microvessels per square millimeter +/- 4.7 [standard deviation]) versus untreated tumors (mean, 22.0 microvessels per square millimeter +/- 9.4); VEGFR2 expression was significantly decreased (>50% lower, P = .03) in treated tumors.
Human MB(KDR) allow in vivo imaging and longitudinal monitoring of VEGFR2 expression in human colon cancer xenografts.
开发并测试人源激酶插入结构域受体(KDR)靶向微泡(MB)(MB(KDR)),以在分子水平上对 KDR 进行成像,并在人结肠癌细胞异种移植肿瘤模型的小鼠中监测抗血管生成治疗。
动物研究得到机构实验动物管理和使用委员会的批准。一种与 KDR 结合具有低纳摩尔亲和力(K(D) = 0.5 nmol/L)的异二聚体肽被偶联到含有全氟丁烷的脂质壳 MB(MB(KDR))表面。在 100 sec(-1)的流动剪切应力条件下,在细胞培养中测试 MB(KDR)与人 KDR 的结合特异性和与人血管内皮生长因子(VEGF)受体 2(VEGFR2)的交叉反应性。在具有 40MHz 超声换能器的人 LS174T 结肠癌细胞异种移植瘤小鼠中,测试 MB(KDR)与人 VEGFR2 的体内结合特异性。使用 MB(KDR)进行靶向对比增强超声成像信号,在有(n = 6)和无(n = 6)抗血管生成治疗(抗-VEGF 抗体)的肿瘤中进行为期 6 天的纵向测量。进行体外 VEGFR2 染色和微血管密度分析。采用 t 检验、Mann-Whitney 检验或 Wilcoxon 检验评估差异的统计学意义。
细胞培养实验显示,MB(KDR)与人 KDR 的结合特异性高 4 倍,与人 VEGFR2 的交叉反应性高(P < or =.01)。与对照 MB 相比,体内成像信号高 3 倍以上(P =.01),用抗-VEGFR2 抗体进行体内受体阻断后,信号显著降低(约低 4 倍,P =.03)。在开始抗血管生成治疗后 1 天,治疗组肿瘤的成像信号显著降低(约低 46%,P =.02),在随后的 5 天内,信号持续显著降低(范围为 46%-84%降低,P =.038)。治疗组(平均 7.3 个微血管/平方毫米 +/- 4.7[标准差])与未治疗组(平均 22.0 个微血管/平方毫米 +/- 9.4)的微血管密度均显著降低(P =.04);治疗组 VEGFR2 表达降低(P =.03),>50%。
人源 MB(KDR)允许对人结肠癌细胞异种移植瘤进行体内成像和 VEGFR2 表达的纵向监测。