Suppr超能文献

通过逆复源公式进行荧光产率和寿命的全线性重建方法:模拟研究。

Fully linear reconstruction method for fluorescence yield and lifetime through inverse complex-source formulation: simulation studies.

机构信息

Department of Mathematics, University of California, Irvine, California 926197, USA.

出版信息

Opt Lett. 2010 Jun 1;35(11):1899-901. doi: 10.1364/OL.35.001899.

Abstract

In fluorescence imaging, both fluorescence yield and lifetime are of great importance. Traditionally, with the frequency-domain data, two parameters can be directly recovered through a nonlinear formulation. However, the reconstruction accuracy highly depends on initial guesses. To overcome this hurdle, we propose the linear scheme via an inverse complex-source formulation. Using the real and imaginary parts of the frequency-domain data, the proposed method is fully linear; it is not sensitive to initial guesses and is stable with high-level noise. Meanwhile, the algorithm is efficient, and the reconstruction takes one or a few iterations. In addition, the colocalization constraint due to the unique feature of fluorescence imaging is imposed to enhance algorithm performance. The algorithms are tested with simulated data.

摘要

在荧光成像中,荧光产率和寿命都非常重要。传统上,通过频域数据,可以通过非线性公式直接恢复两个参数。然而,重建精度高度依赖于初始猜测。为了克服这一障碍,我们通过逆复源公式提出了线性方案。使用频域数据的实部和虚部,所提出的方法是完全线性的;它对初始猜测不敏感,并且在存在高水平噪声时稳定。同时,该算法效率高,重建只需一次或几次迭代。此外,由于荧光成像的独特特征,施加了共定位约束以提高算法性能。这些算法已通过模拟数据进行了测试。

相似文献

9
Focal modulation microscopy: a theoretical study.焦点调制显微镜:理论研究。
Opt Lett. 2010 Jun 1;35(11):1804-6. doi: 10.1364/OL.35.001804.

本文引用的文献

1
Unsupervised knowledge-transfer for learned image reconstruction.用于学习图像重建的无监督知识转移。
Inverse Probl. 2022 Oct 1;38(10):104004. doi: 10.1088/1361-6420/ac8a91. Epub 2022 Sep 8.
2
Fluorescence lifetime imaging in turbid media.浑浊介质中的荧光寿命成像。
Opt Lett. 1996 Jan 15;21(2):158-60. doi: 10.1364/ol.21.000158.
6
In vivo fluorescence lifetime tomography.体内荧光寿命断层扫描。
J Biomed Opt. 2009 Mar-Apr;14(2):024004. doi: 10.1117/1.3086607.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验