Suppr超能文献

用于学习图像重建的无监督知识转移。

Unsupervised knowledge-transfer for learned image reconstruction.

作者信息

Barbano Riccardo, Kereta Željko, Hauptmann Andreas, Arridge Simon R, Jin Bangti

机构信息

Department of Computer Science, University College London, Gower Street, London WC1E 6BT, United Kingdom.

Research Unit of Mathematical Sciences; University of Oulu, Oulu, Finland.

出版信息

Inverse Probl. 2022 Oct 1;38(10):104004. doi: 10.1088/1361-6420/ac8a91. Epub 2022 Sep 8.

Abstract

Deep learning-based image reconstruction approaches have demonstrated impressive empirical performance in many imaging modalities. These approaches usually require a large amount of high-quality paired training data, which is often not available in medical imaging. To circumvent this issue we develop a novel unsupervised knowledge-transfer paradigm for learned reconstruction within a Bayesian framework. The proposed approach learns a reconstruction network in two phases. The first phase trains a reconstruction network with a set of ordered pairs comprising of ground truth images of ellipses and the corresponding simulated measurement data. The second phase fine-tunes the pretrained network to more realistic measurement data without supervision. By construction, the framework is capable of delivering predictive uncertainty information over the reconstructed image. We present extensive experimental results on low-dose and sparse-view computed tomography showing that the approach is competitive with several state-of-the-art supervised and unsupervised reconstruction techniques. Moreover, for test data distributed differently from the training data, the proposed framework can significantly improve reconstruction quality not only visually, but also quantitatively in terms of PSNR and SSIM, when compared with learned methods trained on the synthetic dataset only.

摘要

基于深度学习的图像重建方法在许多成像模态中都展现出了令人印象深刻的实证性能。这些方法通常需要大量高质量的配对训练数据,而这在医学成像中往往难以获得。为解决这个问题,我们在贝叶斯框架内开发了一种用于学习重建的新型无监督知识转移范式。所提出的方法分两个阶段学习重建网络。第一阶段使用一组由椭圆的真实图像和相应模拟测量数据组成的有序对来训练重建网络。第二阶段在无监督的情况下将预训练网络微调至更逼真的测量数据。通过构建,该框架能够提供关于重建图像的预测不确定性信息。我们展示了在低剂量和稀疏视图计算机断层扫描上的大量实验结果,表明该方法与几种先进的有监督和无监督重建技术具有竞争力。此外,对于分布与训练数据不同的测试数据,与仅在合成数据集上训练的学习方法相比,所提出的框架不仅在视觉上,而且在PSNR和SSIM方面在定量上都能显著提高重建质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ca/10515400/90dd90b09310/ipac8a91f1_hr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验