Suppr超能文献

蜘蛛牵引丝蛋白组装体的纳米结构和分子力学。

Nanostructure and molecular mechanics of spider dragline silk protein assemblies.

机构信息

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA.

出版信息

J R Soc Interface. 2010 Dec 6;7(53):1709-21. doi: 10.1098/rsif.2010.0149. Epub 2010 Jun 2.

Abstract

Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 3₁-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre.

摘要

蜘蛛丝是一种自组装的生物聚合物,尽管其基础的氢键弱化学键使其机械性能超过了大多数已知材料。虽然实验研究表明,丝蛋白的分子结构对丝的刚性、韧性和失效强度有直接影响,但尚未有关于丝组装体的纳米结构和相关力学性能的分子水平分析。在这里,我们使用 replica exchange 分子动力学方法报告了来自 Nephila clavipes 蜘蛛牵引丝序列的 MaSp1 和 MaSp2 蛋白的原子级结构,并对这些结构进行机械加载,以进行详细的纳米力学分析。结构分析表明,丝中的聚丙氨酸区域主要形成独特且有序的β-折叠晶体域,而无序区域则由富含甘氨酸的重复序列组成,这些序列由 3₁-螺旋结构和β-转角组成。我们的结构预测是基于二面角对计算在 Ramachandran 图中呈现的实验数据、α-碳原子距离以及二级结构含量进行验证的。对选定结构的机械剪切模拟表明,丝蛋白组装体的纳米级行为受晶体和半非晶区中明显不同的二级结构含量和氢键控制。结构和力学特性的结果都与现有的实验证据非常吻合。我们的研究结果为进一步对丝进行原子级研究奠定了基础,这可能有助于更好地理解这种生物超纤维强度和韧性的来源。

相似文献

1
Nanostructure and molecular mechanics of spider dragline silk protein assemblies.
J R Soc Interface. 2010 Dec 6;7(53):1709-21. doi: 10.1098/rsif.2010.0149. Epub 2010 Jun 2.
2
Sequence-structure correlations in silk: Poly-Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale.
J Mech Behav Biomed Mater. 2012 Mar;7:30-40. doi: 10.1016/j.jmbbm.2011.07.012. Epub 2011 Jul 26.
3
Molecular mechanics of silk nanostructures under varied mechanical loading.
Biopolymers. 2012 Jun;97(6):408-17. doi: 10.1002/bip.21729. Epub 2011 Oct 24.
5
The mechanical design of spider silks: from fibroin sequence to mechanical function.
J Exp Biol. 1999 Dec;202(Pt 23):3295-303. doi: 10.1242/jeb.202.23.3295.
6
Design of superior spider silk: from nanostructure to mechanical properties.
Biophys J. 2006 Dec 15;91(12):4528-35. doi: 10.1529/biophysj.106.089144. Epub 2006 Sep 1.
7
Complete gene sequence and mechanical property of the fourth type of major ampullate silk protein.
Acta Biomater. 2023 Jan 1;155:282-291. doi: 10.1016/j.actbio.2022.11.042. Epub 2022 Nov 23.
8
Reproducing natural spider silks' copolymer behavior in synthetic silk mimics.
Biomacromolecules. 2012 Dec 10;13(12):3938-48. doi: 10.1021/bm301110s. Epub 2012 Nov 8.

引用本文的文献

2
Elasticity Anisotropy of Silkworm Silk Fiber by Brillouin Light Spectroscopy.
Biomacromolecules. 2025 Apr 14;26(4):2479-2486. doi: 10.1021/acs.biomac.4c01844. Epub 2025 Apr 1.
4
Native Mass Spectrometry Captures the Conformational Plasticity of Proteins with Low-Complexity Domains.
JACS Au. 2025 Jan 8;5(1):281-290. doi: 10.1021/jacsau.4c00961. eCollection 2025 Jan 27.
5
Post-spin Stretch Improves Mechanical Properties, Reduces Necking, and Reverts Effects of Aging in Biomimetic Artificial Spider Silk Fibers.
ACS Appl Polym Mater. 2024 Nov 20;6(23):14342-14350. doi: 10.1021/acsapm.4c02192. eCollection 2024 Dec 13.
6
Liquid-liquid crystalline phase separation of spider silk proteins.
Commun Chem. 2024 Nov 12;7(1):260. doi: 10.1038/s42004-024-01357-2.
7
Progress in Multiscale Modeling of Silk Materials.
Biomacromolecules. 2024 Nov 11;25(11):6987-7014. doi: 10.1021/acs.biomac.4c01122. Epub 2024 Oct 22.
8
Strategies for Making High-Performance Artificial Spider Silk Fibers.
Adv Funct Mater. 2024 Aug 28;34(35):2305040. doi: 10.1002/adfm.202305040. Epub 2023 Oct 10.
9
Review of Spider Silk Applications in Biomedical and Tissue Engineering.
Biomimetics (Basel). 2024 Mar 11;9(3):169. doi: 10.3390/biomimetics9030169.

本文引用的文献

1
The role of kinetics of and amide bonding in protein stability.
Soft Matter. 2008 Jan 22;4(2):328-336. doi: 10.1039/b713972a.
2
Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk.
Nat Mater. 2010 Apr;9(4):359-67. doi: 10.1038/nmat2704. Epub 2010 Mar 14.
5
Mechanical response of silk crystalline units from force-distribution analysis.
Biophys J. 2009 May 20;96(10):3997-4005. doi: 10.1016/j.bpj.2009.02.052.
8
Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy.
J Am Chem Soc. 2008 Jul 30;130(30):9871-7. doi: 10.1021/ja8021208. Epub 2008 Jul 2.
9
Asymptotic strength limit of hydrogen-bond assemblies in proteins at vanishing pulling rates.
Phys Rev Lett. 2008 May 16;100(19):198301. doi: 10.1103/PhysRevLett.100.198301. Epub 2008 May 12.
10
The role of proline in the elastic mechanism of hydrated spider silks.
J Exp Biol. 2008 Jun;211(Pt 12):1948-57. doi: 10.1242/jeb.014225.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验