Suppr超能文献

丝中的序列-结构相关性:N. clavipes MaSp1 的聚丙氨酸重复序列在临界长度尺度上自然得到优化。

Sequence-structure correlations in silk: Poly-Ala repeat of N. clavipes MaSp1 is naturally optimized at a critical length scale.

机构信息

Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave. Room 1-235A&B, Cambridge, MA, USA.

出版信息

J Mech Behav Biomed Mater. 2012 Mar;7:30-40. doi: 10.1016/j.jmbbm.2011.07.012. Epub 2011 Jul 26.

Abstract

Spider silk is a self-assembling biopolymer that outperforms many known materials in terms of its mechanical performance despite being constructed from simple and inferior building blocks. While experimental studies have shown that the molecular structure of silk has a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies in particular under variations of genetic sequences have been reported. Here we report atomistic-level structures of the MaSp1 protein from the Nephila Clavipes spider dragline silk sequence, obtained using an in silico approach based on replica exchange molecular dynamics (REMD) and explicit water molecular dynamics. We apply this method to study the effects of a systematic variation of the poly-alanine repeat lengths, a parameter controlled by the genetic makeup of silk, on the resulting molecular structure of silk at the nanoscale. Confirming earlier experimental and computational work, a structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly β-sheet crystal domains while disorderly regions are formed by glycine-rich repeats that consist of 3(10)-helix type structures and β-turns. Our predictions are directly validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots combined with an analysis of the secondary structure content. The key result of our study is our finding of a strong dependence of the resulting silk nanostructure depending on the poly-alanine length. We observe that the wildtype poly-alanine repeat length of six residues defines a critical minimum length that consistently results in clearly defined β-sheet nanocrystals. For poly-alanine lengths below six, the β-sheet nanocrystals are not well-defined or not visible at all, while for poly-alanine lengths at and above six, the characteristic nanocomposite structure of silk emerges with no significant improvement of the quality of the β-sheet nanocrystal geometry. We present a simple biophysical model that explains these computational observations based on the mechanistic insight gained from the molecular simulations. Our findings set the stage for understanding how variations in the spidroin sequence can be used to engineer the structure and thereby functional properties of this biological superfiber, and present a design strategy for the genetic optimization of spidroins for enhanced mechanical properties. The approach used here may also find application in the design of other self-assembled molecular structures and fibers and in particular biologically inspired or completely synthetic systems.

摘要

蜘蛛丝是一种自组装的生物聚合物,尽管其构建模块简单且较差,但在机械性能方面优于许多已知材料。虽然实验研究表明,丝的分子结构对丝的刚性、韧性和失效强度有直接影响,但很少有关于丝组装体的纳米结构,特别是在遗传序列变化下的分子水平分析的报道。在这里,我们报告了来自 Nephila Clavipes 蜘蛛拖丝序列的 MaSp1 蛋白的原子级结构,该结构是使用基于replica exchange 分子动力学(REMD)和显式水分子动力学的计算方法获得的。我们应用这种方法来研究系统改变聚丙氨酸重复长度的影响,该长度是由丝的遗传组成控制的参数,对纳米尺度上丝的分子结构的影响。证实了早期的实验和计算工作,结构分析表明,丝中的聚丙氨酸区域主要形成明显有序的β-折叠晶体域,而无序区域则由富含甘氨酸的重复序列形成,这些重复序列由 3(10)-螺旋结构和β-转角组成。我们的预测是直接针对基于二面角对计算的实验数据进行验证的,这些数据在 Ramachandran 图中呈现,并结合对二级结构含量的分析。我们研究的关键结果是发现丝的纳米结构强烈依赖于聚丙氨酸的长度。我们观察到,野生型聚丙氨酸重复长度为六个残基定义了一个临界最小长度,该长度始终导致明显定义的β-折叠纳米晶体。对于长度小于六个的聚丙氨酸,β-折叠纳米晶体没有很好地定义或根本不可见,而对于长度为六个或更长的聚丙氨酸,丝的特征纳米复合材料结构出现,β-折叠纳米晶体的几何形状没有明显改善。我们提出了一个简单的生物物理模型,该模型基于从分子模拟中获得的机械洞察力来解释这些计算观察结果。我们的研究结果为理解如何改变丝蛋白序列可以用于工程这种生物超纤维的结构和功能特性奠定了基础,并为遗传优化丝蛋白以提高机械性能提供了设计策略。这里使用的方法也可能应用于其他自组装分子结构和纤维的设计,特别是生物启发或完全合成的系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验