Suppr超能文献

在不同机械载荷下丝纳米结构的分子力学。

Molecular mechanics of silk nanostructures under varied mechanical loading.

机构信息

Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Biopolymers. 2012 Jun;97(6):408-17. doi: 10.1002/bip.21729. Epub 2011 Oct 24.

Abstract

Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications.

摘要

蜘蛛牵引丝是一种自组装的可调谐蛋白复合纤维,其拉伸强度、伸长率和韧性可与许多工程纤维相媲美,使其成为最通用的生物相容性材料之一,也是最具吸引力的合成模拟材料。虽然实验研究表明,丝的肽序列和分子结构直接影响丝的刚性、韧性和失效强度,但很少有关于丝组装体的纳米结构的分子水平分析,特别是在遗传序列变化的情况下。在这项研究中,使用基于复制交换分子动力学和显式水分子动力学的计算方法获得了来自 Nephila clavipes 蜘蛛牵引丝序列的野生型和修饰型 MaSp1 蛋白的原子级结构,然后使用不同的力控制加载条件(包括拉伸、拔出和剥离)对其进行模拟纳米力学测试。作者研究了 N. clavipes MaSp1 肽序列中丙氨酸长度的影响,并确定了纳米力学加载条件的差异对用于代表纤维中交联β-片晶节点的 15 股 840-990 个总残基的单元的行为的影响网络内的牵引丝纤维。所使用的特定加载条件代表了更大尺度上蛋白质网络连通性的概念,对机械性能有显著影响。我们的分析将拉伸、拔出和剥离测试结合起来,将生化特征与机械行为联系起来。本研究中使用的方法可以在各种应用中广泛应用于从头设计具有类似丝的可调材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验