Strathclyde Institute for Pharmacy and Biomedical Science, University of Strathclyde, , Glasgow G4 0NR, UK.
J R Soc Interface. 2010 Aug 6;7 Suppl 4(Suppl 4):S423-33. doi: 10.1098/rsif.2010.0190.focus. Epub 2010 Jun 2.
Selecting polymers for drug encapsulation in pharmaceutical formulations is usually made after extensive trial and error experiments. To speed up excipient choice procedures, we have explored coarse-grained computer simulations (dissipative particle dynamics (DPD) and coarse-grained molecular dynamics using the MARTINI force field) of polymer-drug interactions to study the encapsulation of prednisolone (log p = 1.6), paracetamol (log p = 0.3) and isoniazid (log p = -1.1) in poly(L-lactic acid) (PLA) controlled release microspheres, as well as the encapsulation of propofol (log p = 4.1) in bioavailability enhancing quaternary ammonium palmitoyl glycol chitosan (GCPQ) micelles. Simulations have been compared with experimental data. DPD simulations, in good correlation with experimental data, correctly revealed that hydrophobic drugs (prednisolone and paracetamol) could be encapsulated within PLA microspheres and predicted the experimentally observed paracetamol encapsulation levels (5-8% of the initial drug level) in 50 mg ml(-1) PLA microspheres, but only when initial paracetamol levels exceeded 5 mg ml(-1). However, the mesoscale technique was unable to model the hydrophilic drug (isoniazid) encapsulation (4-9% of the initial drug level) which was observed in experiments. Molecular dynamics simulations using the MARTINI force field indicated that the self-assembly of GCPQ is rapid, with propofol residing at the interface between micellar hydrophobic and hydrophilic groups, and that there is a heterogeneous distribution of propofol within the GCPQ micelle population. GCPQ-propofol experiments also revealed a population of relatively empty and drug-filled GCPQ particles.
选择用于药物封装的聚合物通常是在经过广泛的反复试验后进行的。为了加快赋形剂选择过程,我们探索了粗粒计算机模拟(耗散粒子动力学(DPD)和使用 MARTINI 力场的粗粒分子动力学)来研究泼尼松龙(log p = 1.6)、扑热息痛(log p = 0.3)和异烟肼(log p = -1.1)在聚(L-乳酸)(PLA)控释微球中的封装,以及丙泊酚(log p = 4.1)在生物利用度增强的季铵化棕榈酰基乙二醇壳聚糖(GCPQ)胶束中的封装。模拟结果与实验数据进行了比较。与实验数据高度相关的 DPD 模拟正确地揭示了疏水性药物(泼尼松龙和扑热息痛)可以封装在 PLA 微球内,并预测了实验观察到的扑热息痛包封水平(50mg ml(-1) PLA 微球中初始药物水平的 5-8%),但前提是初始扑热息痛水平超过 5mg ml(-1)。然而,介观技术无法模拟亲水性药物(异烟肼)的封装(50mg ml(-1) PLA 微球中初始药物水平的 4-9%),这在实验中观察到。使用 MARTINI 力场的分子动力学模拟表明,GCPQ 的自组装很快,丙泊酚位于胶束疏水区和亲水区之间的界面处,并且丙泊酚在 GCPQ 胶束群体内呈不均匀分布。GCPQ-丙泊酚实验还揭示了相对有空和充满药物的 GCPQ 颗粒群体。