Suppr超能文献

药物-聚合物相互作用的计算建模在药物制剂中的应用。

In silico modelling of drug-polymer interactions for pharmaceutical formulations.

机构信息

Strathclyde Institute for Pharmacy and Biomedical Science, University of Strathclyde, , Glasgow G4 0NR, UK.

出版信息

J R Soc Interface. 2010 Aug 6;7 Suppl 4(Suppl 4):S423-33. doi: 10.1098/rsif.2010.0190.focus. Epub 2010 Jun 2.

Abstract

Selecting polymers for drug encapsulation in pharmaceutical formulations is usually made after extensive trial and error experiments. To speed up excipient choice procedures, we have explored coarse-grained computer simulations (dissipative particle dynamics (DPD) and coarse-grained molecular dynamics using the MARTINI force field) of polymer-drug interactions to study the encapsulation of prednisolone (log p = 1.6), paracetamol (log p = 0.3) and isoniazid (log p = -1.1) in poly(L-lactic acid) (PLA) controlled release microspheres, as well as the encapsulation of propofol (log p = 4.1) in bioavailability enhancing quaternary ammonium palmitoyl glycol chitosan (GCPQ) micelles. Simulations have been compared with experimental data. DPD simulations, in good correlation with experimental data, correctly revealed that hydrophobic drugs (prednisolone and paracetamol) could be encapsulated within PLA microspheres and predicted the experimentally observed paracetamol encapsulation levels (5-8% of the initial drug level) in 50 mg ml(-1) PLA microspheres, but only when initial paracetamol levels exceeded 5 mg ml(-1). However, the mesoscale technique was unable to model the hydrophilic drug (isoniazid) encapsulation (4-9% of the initial drug level) which was observed in experiments. Molecular dynamics simulations using the MARTINI force field indicated that the self-assembly of GCPQ is rapid, with propofol residing at the interface between micellar hydrophobic and hydrophilic groups, and that there is a heterogeneous distribution of propofol within the GCPQ micelle population. GCPQ-propofol experiments also revealed a population of relatively empty and drug-filled GCPQ particles.

摘要

选择用于药物封装的聚合物通常是在经过广泛的反复试验后进行的。为了加快赋形剂选择过程,我们探索了粗粒计算机模拟(耗散粒子动力学(DPD)和使用 MARTINI 力场的粗粒分子动力学)来研究泼尼松龙(log p = 1.6)、扑热息痛(log p = 0.3)和异烟肼(log p = -1.1)在聚(L-乳酸)(PLA)控释微球中的封装,以及丙泊酚(log p = 4.1)在生物利用度增强的季铵化棕榈酰基乙二醇壳聚糖(GCPQ)胶束中的封装。模拟结果与实验数据进行了比较。与实验数据高度相关的 DPD 模拟正确地揭示了疏水性药物(泼尼松龙和扑热息痛)可以封装在 PLA 微球内,并预测了实验观察到的扑热息痛包封水平(50mg ml(-1) PLA 微球中初始药物水平的 5-8%),但前提是初始扑热息痛水平超过 5mg ml(-1)。然而,介观技术无法模拟亲水性药物(异烟肼)的封装(50mg ml(-1) PLA 微球中初始药物水平的 4-9%),这在实验中观察到。使用 MARTINI 力场的分子动力学模拟表明,GCPQ 的自组装很快,丙泊酚位于胶束疏水区和亲水区之间的界面处,并且丙泊酚在 GCPQ 胶束群体内呈不均匀分布。GCPQ-丙泊酚实验还揭示了相对有空和充满药物的 GCPQ 颗粒群体。

相似文献

1
In silico modelling of drug-polymer interactions for pharmaceutical formulations.
J R Soc Interface. 2010 Aug 6;7 Suppl 4(Suppl 4):S423-33. doi: 10.1098/rsif.2010.0190.focus. Epub 2010 Jun 2.
2
Coarse-Grained Molecular Dynamics Simulations of Paclitaxel-Loaded Polymeric Micelles.
Mol Pharm. 2022 Apr 4;19(4):1117-1134. doi: 10.1021/acs.molpharmaceut.1c00800. Epub 2022 Mar 4.
3
Co-micellization behavior of triblock copolymers in the presence of hydrophobic drug molecules: A simulation study.
Colloids Surf B Biointerfaces. 2016 Dec 1;148:299-307. doi: 10.1016/j.colsurfb.2016.09.004. Epub 2016 Sep 5.
5
Exploring the effect of hydrophilic and hydrophobic structure of grafted polymeric micelles on drug loading.
Int J Pharm. 2016 Oct 15;512(1):282-291. doi: 10.1016/j.ijpharm.2016.08.054. Epub 2016 Aug 27.
6
Unusual Enthalpy Driven Self Assembly at Room Temperature with Chitosan Amphiphiles.
Pharm Nanotechnol. 2019;7(1):57-71. doi: 10.2174/2211738507666190311123401.
7
Development of a chitosan-derivative micellar formulation to improve celecoxib solubility and bioavailability.
Drug Dev Ind Pharm. 2014 Nov;40(11):1494-502. doi: 10.3109/03639045.2013.831440. Epub 2013 Sep 2.
10
Cationic amphiphilic drugs self-assemble to the core-shell interface of PEGylated phospholipid micelles and stabilize micellar structure.
Philos Trans A Math Phys Eng Sci. 2013 Sep 2;371(2000):20120309. doi: 10.1098/rsta.2012.0309. Print 2013 Oct 13.

引用本文的文献

3
Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery.
Front Mol Biosci. 2020 Nov 25;7:604770. doi: 10.3389/fmolb.2020.604770. eCollection 2020.
4
Manufacturing strategies to develop amorphous solid dispersions: An overview.
J Drug Deliv Sci Technol. 2020 Feb;55. doi: 10.1016/j.jddst.2019.101459. Epub 2019 Dec 11.
5
Nanomedicines for the Delivery of Biologics.
Pharmaceutics. 2019 May 3;11(5):210. doi: 10.3390/pharmaceutics11050210.
6
Unusual Enthalpy Driven Self Assembly at Room Temperature with Chitosan Amphiphiles.
Pharm Nanotechnol. 2019;7(1):57-71. doi: 10.2174/2211738507666190311123401.
9
Common Internal Allosteric Network Links Anesthetic Binding Sites in a Pentameric Ligand-Gated Ion Channel.
PLoS One. 2016 Jul 12;11(7):e0158795. doi: 10.1371/journal.pone.0158795. eCollection 2016.
10
Predictive analysis of chitosan-based nanocomposite biopolymers elastic properties at nano- and microscale.
J Mol Model. 2016 Apr;22(4):75. doi: 10.1007/s00894-016-2942-z. Epub 2016 Mar 12.

本文引用的文献

1
Lipids on the move: simulations of membrane pores, domains, stalks and curves.
Biochim Biophys Acta. 2009 Jan;1788(1):149-68. doi: 10.1016/j.bbamem.2008.10.006. Epub 2008 Oct 25.
2
The MARTINI force field: coarse grained model for biomolecular simulations.
J Phys Chem B. 2007 Jul 12;111(27):7812-24. doi: 10.1021/jp071097f. Epub 2007 Jun 15.
7
Preparation of microspheres by the solvent evaporation technique.
Adv Drug Deliv Rev. 1997 Oct 13;28(1):25-42. doi: 10.1016/s0169-409x(97)00049-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验