Suppr超能文献

轴突再生中的导向分子。

Guidance molecules in axon regeneration.

机构信息

Department of Cell and Developmental Biology and Department of Neurology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA.

出版信息

Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a001867. doi: 10.1101/cshperspect.a001867. Epub 2010 Jun 2.

Abstract

The regenerative capacity of injured adult mammalian central nervous system (CNS) tissue is very limited. Disease or injury that causes destruction or damage to neuronal networks typically results in permanent neurological deficits. Injury to the spinal cord, for example, interrupts vital ascending and descending fiber tracts of spinally projecting neurons. Because neuronal structures located proximal or distal to the injury site remain largely intact, a major goal of spinal cord injury research is to develop strategies to reestablish innervation lost as a consequence of injury. The growth inhibitory nature of injured adult CNS tissue is a major barrier to regenerative axonal growth and sprouting. An increasing complexity of molecular players is being recognized. CNS inhibitors fall into three general classes: members of canonical axon guidance molecules (e.g., semaphorins, ephrins, netrins), prototypic myelin inhibitors (Nogo, MAG, and OMgp) and chondroitin sulfate proteoglycans (lecticans, NG2). On the other end of the spectrum are molecules that promote neuronal growth and sprouting. These include growth promoting extracellular matrix molecules, cell adhesion molecules, and neurotrophic factors. In addition to environmental (extrinsic) growth regulatory cues, cell intrinsic regulatory mechanisms exist that greatly influence injury-induced neuronal growth. Various degrees of growth and sprouting of injured CNS neurons have been achieved by lowering extrinsic inhibitory cues, increasing extrinsic growth promoting cues, or by activation of cell intrinsic growth programs. More recently, combination therapies that activate growth promoting programs and at the same time attenuate growth inhibitory pathways have met with some success. In experimental animal models of spinal cord injury (SCI), mono and combination therapies have been shown to promote neuronal growth and sprouting. Anatomical growth often correlates with improved behavioral outcomes. Challenges ahead include testing whether some of the most promising treatment strategies in animal models are also beneficial for human patients suffering from SCI.

摘要

成年哺乳动物中枢神经系统 (CNS) 组织的再生能力非常有限。导致神经元网络破坏或损伤的疾病或损伤通常会导致永久性神经功能缺损。例如,脊髓损伤会中断脊髓投射神经元的重要上行和下行纤维束。由于损伤部位近端或远端的神经元结构基本保持完整,因此脊髓损伤研究的主要目标是开发策略来重建由于损伤而丧失的神经支配。受伤的成年中枢神经系统组织的生长抑制特性是再生轴突生长和发芽的主要障碍。越来越多的分子参与者正在被认识到。CNS 抑制剂分为三类:典型轴突导向分子(例如,神经导向因子、 Ephrins、netrins)、原型髓鞘抑制剂(Nogo、MAG 和 OMgp)和软骨素硫酸蛋白聚糖( lecticans、NG2)。在这个范围的另一端是促进神经元生长和发芽的分子。这些包括促进神经元生长和发芽的生长促进细胞外基质分子、细胞粘附分子和神经营养因子。除了环境(外在)生长调节线索外,还存在细胞内在的调节机制,这些机制极大地影响损伤诱导的神经元生长。通过降低外在抑制线索、增加外在促进生长的线索或激活细胞内在的生长程序,已经实现了受伤 CNS 神经元的不同程度的生长和发芽。在脊髓损伤 (SCI) 的实验动物模型中,单药和联合治疗已被证明可促进神经元生长和发芽。解剖学上的生长通常与改善的行为结果相关。未来的挑战包括测试动物模型中最有前途的一些治疗策略是否对患有 SCI 的人类患者也有益。

相似文献

1
Guidance molecules in axon regeneration.轴突再生中的导向分子。
Cold Spring Harb Perspect Biol. 2010 Jul;2(7):a001867. doi: 10.1101/cshperspect.a001867. Epub 2010 Jun 2.
7
Spinal cord regeneration.脊髓再生
Cell Transplant. 2014;23(4-5):573-611. doi: 10.3727/096368914X678427.

引用本文的文献

5
Influence of dexamethasone-induced matrices on the TM transcriptome.地塞米松诱导的基质对 TM 转录组的影响。
Exp Eye Res. 2024 Nov;248:110069. doi: 10.1016/j.exer.2024.110069. Epub 2024 Sep 2.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验