Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA.
Neuropsychopharmacology. 2010 Aug;35(9):1984-96. doi: 10.1038/npp.2010.76. Epub 2010 Jun 2.
Alcohol-induced alterations of cerebellar function cause motor coordination impairments that are responsible for millions of injuries and deaths worldwide. Cognitive deficits associated with alcoholism are also a consequence of cerebellar dysfunction. The mechanisms responsible for these effects of ethanol are poorly understood. Recent studies have identified neurons in the input layer of the cerebellar cortex as important ethanol targets. In this layer, granule cells (GrCs) receive the majority of sensory inputs to the cerebellum through the mossy fibers. Information flow at these neurons is gated by a specialized pacemaker interneuron known as the Golgi cell, which provides divergent GABAergic input to thousands of GrCs. In vivo electrophysiological experiments have previously shown that acute ethanol exposure abolishes GrC responsiveness to sensory inputs carried by mossy fibers. Slice electrophysiological studies suggest that ethanol causes this effect by potentiating GABAergic transmission at Golgi cell-to-GrC synapses through an increase in Golgi cell excitability. Using patch-clamp electrophysiological techniques in cerebellar slices and computer modeling, we show here that ethanol excites Golgi cells by inhibiting the Na(+)/K(+) ATPase. Voltage-clamp recordings of Na(+)/K(+) ATPase currents indicated that ethanol partially inhibits this pump and this effect could be mimicked by low concentrations of ouabain. Partial inhibition of Na(+)/K(+) ATPase function in a computer model of the Golgi cell reproduced these experimental findings. These results establish a novel mechanism of action of ethanol on neuronal excitability, which likely has a role in ethanol-induced cerebellar dysfunction and may also contribute to neuronal functional alterations in other brain regions.
酒精引起的小脑功能改变导致运动协调障碍,这是全球数百万人受伤和死亡的原因。与酗酒相关的认知缺陷也是小脑功能障碍的结果。导致这些乙醇作用的机制还了解甚少。最近的研究已经确定了小脑皮质输入层中的神经元是重要的乙醇靶标。在这一层,颗粒细胞(GrCs)通过苔藓纤维接收小脑的大部分感觉输入。这些神经元的信息流由一种称为高尔基细胞的特殊起搏中间神经元门控,高尔基细胞向数千个 GrC 提供发散的 GABA 能输入。以前的活体电生理实验表明,急性乙醇暴露会使 GrC 对苔藓纤维携带的感觉输入的反应性丧失。切片电生理研究表明,乙醇通过增加高尔基细胞的兴奋性来增强高尔基细胞到 GrC 突触的 GABA 能传递,从而产生这种作用。在这里,我们使用小脑切片中的膜片钳电生理技术和计算机建模,表明乙醇通过抑制 Na(+)/K(+)ATP 酶来兴奋高尔基细胞。Na(+)/K(+)ATP 酶电流的电压钳记录表明,乙醇部分抑制这种泵,而低浓度哇巴因可以模拟这种作用。高尔基细胞计算机模型中 Na(+)/K(+)ATP 酶功能的部分抑制再现了这些实验结果。这些结果确立了乙醇对神经元兴奋性的一种新的作用机制,这可能在乙醇引起的小脑功能障碍中起作用,也可能导致其他脑区神经元功能改变。