Campione Sophia A, Kelliher Christina M, Roth Cullen, Cho Chun Yi, Deckard Anastasia, Motta Francis, Haase Steven B
Department of Biology, Duke University, Durham, NC. 27708 United States.
Azenta Life Sciences, South Plainfield, NJ, 07080 United States.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf524.
Transcriptomic analyses performed in time series have uncovered many important insights into dynamic biological processes such as circadian rhythms, cellular developmental cycles, and the cell cycle. Some of these studies have revealed transcriptomic artifacts (STRIPEs), characterized by substantial changes in transcript levels across the transcriptome between a time point and its temporal neighbors. These changes are unlikely to reflect underlying biology as the magnitude of the change is too large to occur within the time interval and because every gene in the time point exhibits a substantial change. Furthermore, STRIPEs occur across species exhibiting different biology, do not occur in the same phase across replicate time-series experiments, and can vary between technical replicates of a single time point. Here, we demonstrate STRIPEs in five time-series transcriptomic datasets across different species, biological processes, and timescales. We describe a computational method to detect STRIPEs in time series using the Kolmogorov-Smirnov statistical test, allowing for unbiased, user-friendly detection of STRIPEs. Finally, we present three methods for STRIPE correction and demonstrate their efficacy. Using periodicity analysis to identify periodic genes, we find nearly 600 genes changed in periodicity labeling following successful STRIPE correction, indicating the large impact of STRIPE removal on downstream analysis.
对时间序列进行的转录组分析揭示了许多关于动态生物过程的重要见解,如昼夜节律、细胞发育周期和细胞周期。其中一些研究揭示了转录组伪影(STRIPEs),其特征是在一个时间点与其相邻时间点之间,整个转录组的转录水平发生了显著变化。这些变化不太可能反映潜在的生物学现象,因为变化幅度太大,无法在时间间隔内发生,而且该时间点的每个基因都表现出显著变化。此外,STRIPEs在具有不同生物学特性的物种中都会出现,在重复的时间序列实验中不会在同一阶段出现,并且在单个时间点的技术重复之间也会有所不同。在这里,我们在跨越不同物种、生物过程和时间尺度的五个时间序列转录组数据集中展示了STRIPEs。我们描述了一种使用柯尔莫哥洛夫-斯米尔诺夫统计检验来检测时间序列中STRIPEs的计算方法,实现对STRIPEs进行无偏、用户友好的检测。最后,我们提出了三种STRIPE校正方法,并证明了它们的有效性。通过周期性分析来识别周期性基因,我们发现在成功进行STRIPE校正后,近600个基因的周期性标记发生了变化,这表明去除STRIPEs对下游分析有很大影响。