National Cancer Institute, Bethesda, MD 20892, USA.
Bioinformatics. 2010 Aug 1;26(15):1879-86. doi: 10.1093/bioinformatics/btq289. Epub 2010 Jun 4.
We have developed LeTICE (Learning Transcriptional networks from the Integration of ChIP-chip and Expression data), an algorithm for learning a transcriptional network from ChIP-chip and expression data. The network is specified by a binary matrix of transcription factor (TF)-gene interactions partitioning genes into modules and a background of genes that are not involved in the transcriptional regulation. We define a likelihood of a network, and then search for the network optimizing the likelihood. We applied LeTICE to the location and expression data from yeast cells grown in rich media to learn the transcriptional network specific to the yeast cell cycle. It found 12 condition-specific TFs and 15 modules each of which is highly represented with functions related to particular phases of cell-cycle regulation.
Our algorithm is available at http://linus.nci.nih.gov/Data/YounA/LeTICE.zip
我们开发了 LeTICE(从 ChIP-chip 和表达数据的整合中学习转录网络),这是一种从 ChIP-chip 和表达数据中学习转录网络的算法。该网络由转录因子(TF)-基因相互作用的二进制矩阵指定,将基因划分为模块和不参与转录调控的背景基因。我们定义了网络的可能性,然后搜索优化可能性的网络。我们将 LeTICE 应用于在丰富培养基中生长的酵母细胞的位置和表达数据,以学习特定于酵母细胞周期的转录网络。它发现了 12 个条件特异性 TF 和 15 个模块,每个模块都高度代表与细胞周期调控特定阶段相关的功能。
我们的算法可在 http://linus.nci.nih.gov/Data/YounA/LeTICE.zip 获得。