Suppr超能文献

使用人工神经网络进行调控级联建模:以酵母应激反应过程中形成的转录调控网络为例。

Modeling regulatory cascades using Artificial Neural Networks: the case of transcriptional regulatory networks shaped during the yeast stress response.

机构信息

Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Heraklion, Crete, Greece ; Department of Chemistry, University of Crete Heraklion, Crete, Greece.

出版信息

Front Genet. 2013 Jun 20;4:110. doi: 10.3389/fgene.2013.00110. eCollection 2013.

Abstract

Over the last decade, numerous computational methods have been developed in order to infer and model biological networks. Transcriptional networks in particular have attracted significant attention due to their critical role in cell survival. The majority of network inference methods use genome-wide experimental data to search for modules of genes with coherent expression profiles and common regulators, often ignoring the multi-layer structure of transcriptional cascades. Modeling methodologies on the other hand assume a given network structure and vary significantly in their algorithmic approach, ranging from over-simplified representations (e.g., Boolean networks) to detailed -but computationally expensive-network simulations (e.g., with differential equations). In this work we use Artificial Neural Networks (ANNs) to model transcriptional regulatory cascades that emerge during the stress response in Saccharomyces cerevisiae and extend in three layers. We confine the structure of the ANNs to match the structure of the biological networks as determined by gene expression, DNA-protein interaction and experimental evidence provided in publicly available databases. Trained ANNs are able to predict the expression profile of 11 target genes across multiple experimental conditions with a correlation coefficient >0.7. When time-dependent interactions between upstream transcription factors (TFs) and their indirect targets are also included in the ANNs, accurate predictions are achieved for 30/34 target genes. Moreover, heterodimer formation is taken into account. We show that ANNs can be used to (1) accurately predict the expression of downstream genes in a 3-layer transcriptional cascade based on the expression of their indirect regulators and (2) infer the condition- and time-dependent activity of various TFs as well as during heterodimer formation. We show that a three-layer regulatory cascade whose structure is determined by co-expressed gene modules and their regulators can successfully be modeled using ANNs with a similar configuration.

摘要

在过去的十年中,已经开发了许多计算方法,以便推断和建模生物网络。转录网络尤其受到了极大的关注,因为它们在细胞存活中起着关键作用。大多数网络推断方法使用全基因组实验数据来搜索具有一致表达谱和共同调节剂的基因模块,而经常忽略转录级联的多层结构。另一方面,建模方法假设给定的网络结构,并且在算法方法上差异很大,从过于简化的表示形式(例如,布尔网络)到详细但计算昂贵的网络模拟(例如,使用微分方程)。在这项工作中,我们使用人工神经网络(ANNs)来模拟酿酒酵母应激反应过程中出现的转录调控级联,并将其扩展到三层。我们将 ANNs 的结构限制为与基因表达、DNA-蛋白质相互作用和公开可用数据库中提供的实验证据所确定的生物网络结构相匹配。经过训练的 ANNs 能够在多个实验条件下预测 11 个靶基因的表达谱,相关系数>0.7。当将上游转录因子(TFs)与其间接靶基因之间的时变相互作用也包括在 ANNs 中时,能够准确预测 30/34 个靶基因。此外,还考虑了异二聚体的形成。我们表明,ANNs 可以用于:(1)基于间接调节剂的表达,准确预测三层转录级联中的下游基因的表达;(2)推断各种 TF 的条件和时变活性,以及在异二聚体形成期间。我们表明,其结构由共表达基因模块及其调节剂决定的三层调控级联可以成功地使用具有类似配置的 ANNs 进行建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4b3/3687159/da5cf7ec116e/fgene-04-00110-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验