Suppr超能文献

非正态随机效应对多重填补推断的影响:一项模拟评估。

Impact of non-normal random effects on inference by multiple imputation: A simulation assessment.

作者信息

Yucel Recai M, Demirtas Hakan

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, SUNY, One University Place Room 139, Rensselaer, NY 12144, United States.

出版信息

Comput Stat Data Anal. 2010 Mar 1;54(3):790-801. doi: 10.1016/j.csda.2009.01.016.

Abstract

Multivariate extensions of well-known linear mixed-effects models have been increasingly utilized in inference by multiple imputation in the analysis of multilevel incomplete data. The normality assumption for the underlying error terms and random effects plays a crucial role in simulating the posterior predictive distribution from which the multiple imputations are drawn. The plausibility of this normality assumption on the subject-specific random effects is assessed. Specifically, the performance of multiple imputation created under a multivariate linear mixed-effects model is investigated on a diverse set of incomplete data sets simulated under varying distributional characteristics. Under moderate amounts of missing data, the simulation study confirms that the underlying model leads to a well-calibrated procedure with negligible biases and actual coverage rates close to nominal rates in estimates of the regression coefficients. Estimation quality of the random-effect variance and association measures, however, are negatively affected from both the misspecification of the random-effect distribution and number of incompletely-observed variables. Some of the adverse impacts include lower coverage rates and increased biases.

摘要

著名线性混合效应模型的多变量扩展在多级不完全数据的分析中,通过多重填补进行推断时越来越多地被使用。潜在误差项和随机效应的正态性假设在模拟后验预测分布中起着关键作用,而多重填补正是从该分布中抽取的。评估了关于个体特定随机效应的这种正态性假设的合理性。具体而言,在具有不同分布特征的各种不完全数据集上,研究了在多变量线性混合效应模型下创建的多重填补的性能。在中等程度的缺失数据情况下,模拟研究证实,基础模型会产生一个校准良好的程序,在回归系数估计中偏差可忽略不计,实际覆盖率接近名义覆盖率。然而,随机效应方差和关联度量的估计质量受到随机效应分布的错误设定和不完全观测变量数量的负面影响。一些不利影响包括较低的覆盖率和偏差增加。

相似文献

5
Multiple imputation with sequential penalized regression.多重插补与序贯惩罚回归。
Stat Methods Med Res. 2019 May;28(5):1311-1327. doi: 10.1177/0962280218755574. Epub 2018 Feb 16.

引用本文的文献

2
Making Sense of Censored Covariates: Statistical Methods for Studies of Huntington's Disease.理解删失协变量:亨廷顿舞蹈症研究的统计方法
Annu Rev Stat Appl. 2024 Apr;11:255-277. doi: 10.1146/annurev-statistics-040522-095944. Epub 2023 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验