Suppr超能文献

理解删失协变量:亨廷顿舞蹈症研究的统计方法

Making Sense of Censored Covariates: Statistical Methods for Studies of Huntington's Disease.

作者信息

Lotspeich Sarah C, Ashner Marissa C, Vazquez Jesus E, Richardson Brian D, Grosser Kyle F, Bodek Benjamin E, Garcia Tanya P

机构信息

Department of Statistical Sciences, Wake Forest University, Winston-Salem, North Carolina, USA.

Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

Annu Rev Stat Appl. 2024 Apr;11:255-277. doi: 10.1146/annurev-statistics-040522-095944. Epub 2023 Sep 8.

Abstract

The landscape of survival analysis is constantly being revolutionized to answer biomedical challenges, most recently the statistical challenge of censored covariates rather than outcomes. There are many promising strategies to tackle censored covariates, including weighting, imputation, maximum likelihood, and Bayesian methods. Still, this is a relatively fresh area of research, different from the areas of censored outcomes (i.e., survival analysis) or missing covariates. In this review, we discuss the unique statistical challenges encountered when handling censored covariates and provide an in-depth review of existing methods designed to address those challenges. We emphasize each method's relative strengths and weaknesses, providing recommendations to help investigators pinpoint the best approach to handling censored covariates in their data.

摘要

生存分析领域正在不断变革,以应对生物医学挑战,最近面临的统计挑战是截尾协变量而非结局。有许多应对截尾协变量的有前景的策略,包括加权、插补、最大似然法和贝叶斯方法。不过,这是一个相对较新的研究领域,不同于截尾结局(即生存分析)或缺失协变量的领域。在本综述中,我们讨论处理截尾协变量时遇到的独特统计挑战,并对旨在应对这些挑战的现有方法进行深入综述。我们强调每种方法的相对优缺点,提供建议以帮助研究人员确定处理其数据中截尾协变量的最佳方法。

相似文献

1
Making Sense of Censored Covariates: Statistical Methods for Studies of Huntington's Disease.理解删失协变量:亨廷顿舞蹈症研究的统计方法
Annu Rev Stat Appl. 2024 Apr;11:255-277. doi: 10.1146/annurev-statistics-040522-095944. Epub 2023 Sep 8.
4
Cox regression model with randomly censored covariates.具有随机删失协变量的Cox回归模型。
Biom J. 2019 Jul;61(4):1020-1032. doi: 10.1002/bimj.201800275. Epub 2019 Mar 25.

引用本文的文献

1
Robust evaluation of longitudinal surrogate markers with censored data.对带有删失数据的纵向替代标志物进行稳健评估。
J R Stat Soc Series B Stat Methodol. 2024 Dec 26;87(3):891-907. doi: 10.1093/jrsssb/qkae119. eCollection 2025 Jul.

本文引用的文献

5
Therapeutic strategies for Huntington's disease.亨廷顿病的治疗策略。
Curr Opin Neurol. 2020 Aug;33(4):508-518. doi: 10.1097/WCO.0000000000000835.
8
Dynamic landmark prediction for mixture data.动态混合数据地标预测。
Biostatistics. 2021 Jul 17;22(3):558-574. doi: 10.1093/biostatistics/kxz052.
9
Cox regression model with randomly censored covariates.具有随机删失协变量的Cox回归模型。
Biom J. 2019 Jul;61(4):1020-1032. doi: 10.1002/bimj.201800275. Epub 2019 Mar 25.
10
Conditional modeling of longitudinal data with terminal event.带有终末事件的纵向数据的条件建模
J Am Stat Assoc. 2018;113(521):357-368. doi: 10.1080/01621459.2016.1255637. Epub 2017 Nov 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验