Suppr超能文献

理解删失协变量:亨廷顿舞蹈症研究的统计方法

Making Sense of Censored Covariates: Statistical Methods for Studies of Huntington's Disease.

作者信息

Lotspeich Sarah C, Ashner Marissa C, Vazquez Jesus E, Richardson Brian D, Grosser Kyle F, Bodek Benjamin E, Garcia Tanya P

机构信息

Department of Statistical Sciences, Wake Forest University, Winston-Salem, North Carolina, USA.

Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

出版信息

Annu Rev Stat Appl. 2024 Apr;11:255-277. doi: 10.1146/annurev-statistics-040522-095944. Epub 2023 Sep 8.

Abstract

The landscape of survival analysis is constantly being revolutionized to answer biomedical challenges, most recently the statistical challenge of censored covariates rather than outcomes. There are many promising strategies to tackle censored covariates, including weighting, imputation, maximum likelihood, and Bayesian methods. Still, this is a relatively fresh area of research, different from the areas of censored outcomes (i.e., survival analysis) or missing covariates. In this review, we discuss the unique statistical challenges encountered when handling censored covariates and provide an in-depth review of existing methods designed to address those challenges. We emphasize each method's relative strengths and weaknesses, providing recommendations to help investigators pinpoint the best approach to handling censored covariates in their data.

摘要

生存分析领域正在不断变革,以应对生物医学挑战,最近面临的统计挑战是截尾协变量而非结局。有许多应对截尾协变量的有前景的策略,包括加权、插补、最大似然法和贝叶斯方法。不过,这是一个相对较新的研究领域,不同于截尾结局(即生存分析)或缺失协变量的领域。在本综述中,我们讨论处理截尾协变量时遇到的独特统计挑战,并对旨在应对这些挑战的现有方法进行深入综述。我们强调每种方法的相对优缺点,提供建议以帮助研究人员确定处理其数据中截尾协变量的最佳方法。

相似文献

1
Making Sense of Censored Covariates: Statistical Methods for Studies of Huntington's Disease.
Annu Rev Stat Appl. 2024 Apr;11:255-277. doi: 10.1146/annurev-statistics-040522-095944. Epub 2023 Sep 8.
2
3
Correcting conditional mean imputation for censored covariates and improving usability.
Biom J. 2022 Jun;64(5):858-862. doi: 10.1002/bimj.202100250. Epub 2022 Feb 24.
4
Cox regression model with randomly censored covariates.
Biom J. 2019 Jul;61(4):1020-1032. doi: 10.1002/bimj.201800275. Epub 2019 Mar 25.
5
Simple adjustments for randomized trials with nonrandomly missing or censored outcomes arising from informative covariates.
Biostatistics. 2006 Jan;7(1):29-40. doi: 10.1093/biostatistics/kxi038. Epub 2005 May 27.
7
Linear Regression with a Randomly Censored Covariate: Application to an Alzheimer's Study.
J R Stat Soc Ser C Appl Stat. 2017;66(2):313-328. doi: 10.1111/rssc.12164. Epub 2016 Jun 27.
9
Multiple Imputation of a Randomly Censored Covariate Improves Logistic Regression Analysis.
J Appl Stat. 2016;43(15):2886-2896. doi: 10.1080/02664763.2016.1155110. Epub 2016 Mar 16.

引用本文的文献

1
Robust evaluation of longitudinal surrogate markers with censored data.
J R Stat Soc Series B Stat Methodol. 2024 Dec 26;87(3):891-907. doi: 10.1093/jrsssb/qkae119. eCollection 2025 Jul.
2
Analyzing Coarsened and Missing Data by Imputation Methods.
Stat Med. 2025 Mar 15;44(6):e70032. doi: 10.1002/sim.70032.

本文引用的文献

2
Correcting conditional mean imputation for censored covariates and improving usability.
Biom J. 2022 Jun;64(5):858-862. doi: 10.1002/bimj.202100250. Epub 2022 Feb 24.
3
Tracking Huntington's Disease Progression Using Motor, Functional, Cognitive, and Imaging Markers.
Mov Disord. 2021 Oct;36(10):2282-2292. doi: 10.1002/mds.28650. Epub 2021 May 20.
4
Regression with a right-censored predictor using inverse probability weighting methods.
Stat Med. 2020 Nov 30;39(27):4001-4015. doi: 10.1002/sim.8704. Epub 2020 Aug 10.
5
Therapeutic strategies for Huntington's disease.
Curr Opin Neurol. 2020 Aug;33(4):508-518. doi: 10.1097/WCO.0000000000000835.
7
Review of statistical methods for survival analysis using genomic data.
Genomics Inform. 2019 Dec;17(4):e41. doi: 10.5808/GI.2019.17.4.e41. Epub 2019 Dec 20.
8
Dynamic landmark prediction for mixture data.
Biostatistics. 2021 Jul 17;22(3):558-574. doi: 10.1093/biostatistics/kxz052.
9
Cox regression model with randomly censored covariates.
Biom J. 2019 Jul;61(4):1020-1032. doi: 10.1002/bimj.201800275. Epub 2019 Mar 25.
10
Conditional modeling of longitudinal data with terminal event.
J Am Stat Assoc. 2018;113(521):357-368. doi: 10.1080/01621459.2016.1255637. Epub 2017 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验