Mosadegh Bobak, Kuo Chuan-Hsien, Tung Yi-Chung, Torisawa Yu-Suke, Bersano-Begey Tommaso, Tavana Hossein, Takayama Shuichi
Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, Michigan 48109-2099, USA.
Nat Phys. 2010 Jun 1;6(6):433-437. doi: 10.1038/nphys1637.
A critical need for enhancing usability and capabilities of microfluidic technologies is the development of standardized, scalable, and versatile control systems1,2. Electronically controlled valves and pumps typically used for dynamic flow regulation, although useful, can limit convenience, scalability, and robustness3-5. This shortcoming has motivated development of device-embedded non-electrical flow-control systems. Existing approaches to regulate operation timing on-chip, however, still require external signals such as timed generation of fluid flow, bubbles, liquid plugs or droplets, or an alteration of chemical compositions or temperature6-16. Here, we describe a strategy to provide device-embedded flow switching and clocking functions. Physical gaps and cavities interconnected by holes are fabricated into a three-layer elastomer structure to form networks of fluidic gates that can spontaneously generate cascading and oscillatory flow output using only a constant flow of Newtonian fluids as the device input. The resulting microfluidic substrate architecture is simple, scalable, and should be applicable to various materials. This flow-powered fluidic gating scheme brings the autonomous signal processing ability of microelectronic circuits to microfluidics where there is the added diversity in current information of having distinct chemical or particulate species and richness in current operation of having chemical reactions and physical interactions.
提高微流控技术的可用性和功能的一个关键需求是开发标准化、可扩展且通用的控制系统1,2。通常用于动态流量调节的电控阀门和泵虽然有用,但可能会限制便利性、可扩展性和耐用性3-5。这一缺点促使人们开发嵌入式非电气流量控制系统。然而,现有的片上操作定时调节方法仍然需要外部信号,如流体流动、气泡、液塞或液滴的定时产生,或化学成分或温度的改变6-16。在这里,我们描述了一种提供嵌入式流量切换和计时功能的策略。通过在三层弹性体结构中制造由孔相互连接的物理间隙和腔体,形成流体门网络,该网络仅使用牛顿流体的恒定流作为设备输入,就能自发产生级联和振荡流输出。由此产生的微流控基板架构简单、可扩展,并且应该适用于各种材料。这种流动驱动的流体门控方案将微电子电路的自主信号处理能力引入微流控领域,在微流控领域,当前信息具有独特的化学或颗粒种类,并且在当前操作中具有化学反应和物理相互作用,具有更多样性。