Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4 (1900) La Plata, Argentina.
Phys Chem Chem Phys. 2010 Jul 28;12(28):8071-83. doi: 10.1039/c000797h. Epub 2010 Jun 7.
There is a growing quest for the construction of functional supramolecular architectures to efficiently translate (bio)chemical events into easily measurable signals. This interest originates from its inherent scientific relevance as well as from their potential applications in the ever-flourishing areas of bioelectronics and biosensing. Herein, we describe the immobilization of glycoproteins onto electrode surfaces based on recognition-mediated supramolecular processes. Quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR) spectroscopy, and electrochemical (EC) measurements were used to characterize the structural and functional features of these bio-supramolecular systems. Carbohydrate-lectin interactions were successfully used to build up stable assemblies of glucose oxidase (GOx) layers mediated by the recognition properties of concanavalin A supramolecular architectures. The catalytic response of GOx indicates that the whole population of enzymes incorporated in the supramolecular architecture is fully active. Even though lectin-carbohydrate interactions are rather weak, the multivalency effects prevailing in the supramolecular assembly confer remarkable stability to the interfacial architecture, thus preventing the release of the enzyme from the surface even with high glucose (ligand) concentrations. This approach represents a simple and straightforward route to locally address functional glycoproteins at interfaces. In this context, we consider that the versatility of a supramolecular assembly using biological interactions could open up new ways of envisioning or to generate new ideas for the future development of highly efficient bioelectronic platforms.
人们越来越追求构建功能性超分子结构,以有效地将(生物)化学事件转化为易于测量的信号。这种兴趣源于其固有的科学相关性,以及它们在生物电子学和生物传感这两个蓬勃发展领域的潜在应用。在此,我们描述了基于识别介导的超分子过程将糖蛋白固定在电极表面上的方法。利用石英晶体微天平(QCM-D)、表面等离子体共振(SPR)光谱和电化学(EC)测量来表征这些生物超分子系统的结构和功能特征。糖-凝集素相互作用被成功地用于通过伴刀豆球蛋白 A 超分子结构的识别特性构建葡萄糖氧化酶(GOx)层的稳定组装。GOx 的催化响应表明,整合到超分子结构中的整个酶群体都是完全活跃的。尽管凝集素-碳水化合物相互作用相当弱,但超分子组装中存在的多价效应赋予界面结构显著的稳定性,从而即使在高葡萄糖(配体)浓度下也能防止酶从表面释放。这种方法代表了在界面处局部寻址功能性糖蛋白的一种简单而直接的途径。在这种情况下,我们认为使用生物相互作用的超分子组装的多功能性可以为未来高效生物电子平台的发展开辟新的思路或产生新的想法。