Devida Juan M, Herrera Facundo, Daza Millone M Antonieta, Requejo Félix G, Pallarola Diego
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata 1900, Argentina.
Instituto de Nanosistemas, Universidad Nacional de General San Martín, Av. 25 de Mayo y Francia, San Martín 1650, Argentina.
ACS Omega. 2023 Jul 21;8(30):27566-27575. doi: 10.1021/acsomega.3c03220. eCollection 2023 Aug 1.
Graphene oxide has been widely deployed in electrical sensors for monitoring physical, chemical, and biological processes. The presence of abundant oxygen functional groups makes it an ideal substrate for integrating biological functional units to assemblies. However, the introduction of this type of defects on the surface of graphene has a deleterious effect on its electrical properties. Therefore, adjusting the surface chemistry of graphene oxide is of utmost relevance for addressing the immobilization of biomolecules, while preserving its electrochemical integrity. Herein, we describe the direct immobilization of glucose oxidase onto graphene oxide-based electrodes prepared by Langmuir-Blodgett assembly. Electrochemical reduction of graphene oxide allowed to control its surface chemistry and, by this, regulate the nature and density of binding sites for the enzyme and the overall responsiveness of the Langmuir-Blodgett biofilm. X-ray photoelectron spectroscopy, surface plasmon resonance, and electrochemical measurements were used to characterize the compositional and functional features of these biointerfaces. Covalent binding between amine groups on glucose oxidase and epoxy and carbonyl groups on the surface of graphene oxide was successfully used to build up stable and active enzymatic assemblies. This approach constitutes a simple, quick, and efficient route to locally address functional proteins at interfaces without the need for additives or complex modifiers to direct the adsorption process.
氧化石墨烯已广泛应用于电传感器中,用于监测物理、化学和生物过程。丰富的氧官能团使其成为将生物功能单元整合到组件中的理想基质。然而,这种类型的缺陷在石墨烯表面的引入对其电学性质具有有害影响。因此,调整氧化石墨烯的表面化学性质对于解决生物分子的固定化问题至关重要,同时要保持其电化学完整性。在此,我们描述了通过朗缪尔-布洛杰特组装法将葡萄糖氧化酶直接固定在基于氧化石墨烯的电极上。氧化石墨烯的电化学还原能够控制其表面化学性质,从而调节酶的结合位点的性质和密度以及朗缪尔-布洛杰特生物膜的整体响应性。利用X射线光电子能谱、表面等离子体共振和电化学测量来表征这些生物界面的组成和功能特征。葡萄糖氧化酶上的胺基与氧化石墨烯表面的环氧基和羰基之间的共价结合成功用于构建稳定且活性的酶组装体。这种方法构成了一种简单、快速且高效的途径,无需添加剂或复杂的改性剂来指导吸附过程,即可在界面处局部固定功能蛋白。