Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, 1900 La Plata, Argentina.
Phys Chem Chem Phys. 2012 Aug 21;14(31):11027-39. doi: 10.1039/c2cp41225j. Epub 2012 Jul 5.
The development of soft bioelectronic interfaces with accurate compositional and topological control of the supramolecular architecture attracts intense interest in the fast-growing field of bioelectronics and biosensing. The present study explores the recognition-driven layer-by-layer assembly of glycoenzymes onto electrode surfaces. The design of the multi-protein interfacial architecture is based on the multivalent supramolecular carbohydrate-lectin interactions between redox glycoproteins and concanavalin A (Con A) derivatives. Specifically, Os(bpy)(2)Clpy-tagged Con A (Os-Con A) and native Con A were used to direct the assembly of horseradish peroxidase (HRP) and glucose oxidase (GOx) in a stepwise topologically controlled procedure. In our designed configuration, GOx acts as the biorecognition element to glucose stimulus, while HRP acts as the transducing element. Surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance with dissipation (QCM-D) results are combined to give a close representation of the protein surface coverage and the content of water in the protein assembly. The characterization is complemented with in situ atomic force microscopy (AFM) to give a topographical description of the layers assemblage. Electrochemical (EC) techniques were used to characterize the functional features of the spontaneously self-assembled biohybrid architecture, showing that the whole system presents efficient electron transfer and mass transport processes being able to transform micromolar glucose concentration into electrical information. In this way the combination of the electroactive and nonelectroactive Con A provides an efficient strategy to control the position and composition of the protein layers via recognition-driven processes, which defines its sensitivity toward glucose. Furthermore, the incorporation of dextran as a permeable interlayer able to bind Con A promotes the physical separation of the biochemical and transducing processes, thus enhancing the magnitude of the bioelectrochemical signal. We consider that these results are relevant for the nanoconstruction of functional biointerfaces provided that our experimental evidence reveals the possibility of locally addressing recognition, transduction and amplification elements in interfacial ensembles via LbL recognition-driven processes.
具有超分子结构精确组成和拓扑控制的软生物电子界面的发展在快速发展的生物电子学和生物传感领域引起了极大的兴趣。本研究探索了基于糖酶的识别驱动的层层组装到电极表面上。多蛋白界面结构的设计基于氧化还原糖蛋白与伴刀豆球蛋白 A(Con A)衍生物之间的多价超分子碳水化合物 - 凝集素相互作用。具体来说,使用Os(bpy)(2)Clpy-标记的 Con A(Os-Con A)和天然 Con A 来引导辣根过氧化物酶(HRP)和葡萄糖氧化酶(GOx)的组装在逐步拓扑控制的程序中。在我们设计的构型中,GOx 作为生物识别元件对葡萄糖刺激起作用,而 HRP 作为转导元件起作用。表面等离子体共振(SPR)光谱和石英晶体微天平(QCM-D)结果相结合,对蛋白质表面覆盖率和蛋白质组装中水的含量进行了紧密的表示。该特性通过原位原子力显微镜(AFM)进行了补充,以对层状组装进行形貌描述。电化学(EC)技术用于表征自发自组装生物杂化结构的功能特征,表明整个系统呈现出有效的电子转移和质量传输过程,能够将微摩尔葡萄糖浓度转化为电信息。通过这种方式,电化学活性和非电化学活性的 Con A 的组合提供了一种通过识别驱动过程控制蛋白质层位置和组成的有效策略,从而定义了其对葡萄糖的敏感性。此外,将葡聚糖作为能够结合 Con A 的可渗透夹层的掺入促进了生化和转导过程的物理分离,从而增强了生物电化学信号的幅度。我们认为这些结果与功能生物界面的纳米构建有关,因为我们的实验证据表明通过 LbL 识别驱动过程有可能在界面组件中局部寻址识别、转导和放大元件。