Department of Radiology,University of Michigan, Ann Arbor, MI, USA.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jun;57(6):1311-9. doi: 10.1109/TUFFC.2010.1551.
Reconfigurable arrays offer an advantage over traditional ultrasound arrays because of their flexibility in channel selection. To improve ultrasound beamforming and coverage through beam steering, we propose a hybrid beamforming technique to elongate the depth of focus of transmit beams and a method of element selection that improves steering capabilities that take advantage of array reconfigurability using annular rings. A local minimization technique to optimize the hybrid aperture is discussed in this paper. The chosen hybrid apertures covering four focal zones result in improved range in depth of focus when compared with pure spherical beams via point spread functions (PSF) and lesion signal-to-noise ratio (LSNR) calculations. Improvements were statistically significant at focal depth extremes. Our method of beam steering utilizing a quantized phase delay selection to minimize delay errors indicated better performance by removing an artifact present with traditional ringed element selection.
可重构阵列相对于传统超声阵列具有优势,因为它们在通道选择方面具有灵活性。为了通过波束转向提高超声波束形成和覆盖范围,我们提出了一种混合波束形成技术来延长发射波束的聚焦深度,并提出了一种利用环形阵列的可重构性来提高转向能力的单元选择方法。本文讨论了一种用于优化混合孔径的局部最小化技术。通过点扩散函数 (PSF) 和病变信号噪声比 (LSNR) 计算,与纯球形波束相比,所选的覆盖四个焦点区域的混合孔径导致聚焦深度的范围得到改善。在焦点深度极端情况下,改进具有统计学意义。我们利用量化相位延迟选择来最小化延迟误差的波束转向方法表明,通过消除传统环形元件选择存在的伪影,性能更好。